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Abstract: Electrical Impedance Tomography (EIT) is a medical imaging technique which uses electrical stimulations
and measurements at body-surface electrodes. From these data, images of the distribution of conductivity within the
body are calculated by solving an inverse problem. EIT has the advantage of producing high temporal resolution data,
while being relatively low cost, non-invasive, small, and not using ionizing radiation. On the other hand, EIT has
disadvantages in providing low spatial resolution, and being sensitive to changes at the electrodes. EIT is currently
being used clinically for monitoring of ventilated patients, and is also being actively researched for applications such
as cardiovascular flows and pressures, brain and nervous activity, cancer screening, and monitoring of gastrointestinal
flows. EIT is similar to the electrical resistance tomography used in geophysical and process monitoring. This article
reviews EIT from the point of view of its applications as well as image generation and interpretation.

1 Introduction
Electrical Impedance Tomography (EIT) is an imaging
technique which estimates the distribution of electrical
properties (and their changes over time) within a body.
EIT systems make electrical stimulations and measure the
voltages at combinations of body surface electrodes, from
which images are reconstructed.

EIT is useful when contrasts in electrical properties of
tissue correspond to clinically interesting conditions, such
as air movement in the lungs, or the presence of cancer-
ous tissues. For example, figure 1 shows the application of
EIT for monitoring of breathing in a newborn. EIT mea-
surements are non-invasive, and use no ionizing radiation;
it is capable of high temporal resolution, and is poten-
tially inexpensive, using commodity electronics compo-
nents. On the other hand, EIT has poor spatial resolution
and can be sensitive to artefacts due to electrode effects.

The name EIT derives from the fact that electrical
impedance measurements are the source data for the to-
mographic images. The reconstructed images are in units
of impedivity (or resistivity if at low frequency) – not
impedance. EIT is a “tomographic” modality in the sense
that it creates images of the internal properties of the
body; however, EIT is different from the true tomographic
imaging methods in that slices cannot be imaged indepen-
dently, due to the diffuse propagation of electrical current.

EIT is primarily used for medical applications. How-
ever, it is closely related to electrical resistance tomog-
raphy (ERT) which is used for geophysical imaging and
in process tomography. EIT is also related to impedance
spectroscopy – characterizing the impedance spectrum
(i.e. as a function of stimulation frequency) of a sample.
The primary difference is that impedance spectroscopy
uses one pattern of stimulus and measurement electrodes,

���������������������������

���0 2 4 6 8 10 12 14 16

Figure 1: A 10-day old infant with EIT electrodes, from
the study (56), from which cross-sectional images are re-
constructed with pixel waveforms showing the heart and
left and right lung activity. For an infant with the head
turned to the side, the contralateral lung receives most tidal
ventilation.

and does not calculate images. EIT can thus be seen as an
imaging extension of impedance spectroscopy.

The earliest reference to the concepts behind medical
EIT were for geophysical imaging, by Schlumberger in
1911 (12). For medical imaging, EIT was introduced by
Henderson and Webster (57) in the late 1970s followed
by the work of Barber and Brown in the early 1980s (15).
Early work focused on imaging of the lungs and heart,
with subsequent development toward imaging of the ab-
domen, brain, and breast. Work in the geophysical do-
main, has progressed largely independently of medical
developments; ERT currently sees most application for
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Figure 2: Overview of the steps in EIT image generation and interpretation, from (47). A: physiologically interesting tis-
sues have electrical properties which contrast with surrounding tissues or change over time; B: EIT hardware systems apply
electrical current and measures voltages on a sequence of body surface electrodes; C: The pattern of electrical stimulation
and measurements, and the body geometry and electrical properties, determine the sensitive region; D: Images of the conduc-
tivity (absolute EIT) or the change in conductivity (difference EIT) are calculated by using the sensitivity field in an image
reconstruction algorithm; and E: Physiologically relevant measures are calculated from image contrasts and their changes over
time.

imaging of conductive (i.e. metal-bearing) ore and the
presence and movement of liquids (e.g. for groundwater
and leaching). Another application area for imaging of
impedance has been in the process tomography commu-
nity, for imaging the flow and mixing of industrial fluids
(16).

Mathematical interest in the inverse problem was kin-
dled by the work of Calderón (27) in 1980, with work fo-
cusing on the existence and uniqueness of EIT solutions
(89). Currently, medical EIT systems are manufactured
by several companies (47) for human and veterinary use,
with the primary application of monitoring breathing. A
broad research community has formed, meeting annually
at the “International Conference on Biomedical Applica-
tions of Electrical Impedance Tomography.” Much of the
software and data is available in an open source project,
EIDORS (3). A number of good overviews of EIT appli-
cations have been written, to which we refer the interested
reader: (5, 9, 7, 17, 35, 47, 46, 43, 59, 64, 67, 75, 81).

The remainder of this article is organized as follows: in
section 2, we describe applications of EIT, with a more
detailed description of two applications. The subsequent
sections describe EIT image generation and reconstruc-
tion, as illustrated in figure 2. First, a phenomenon of
interest creates a contrast in the electrical properties of
tissue (section 3); for example the movement of air into
the lungs decreases the conductivity of lung tissue in pro-
portion to the quantity of air received, while the con-
ductivity spectrum of cancerous tissue contrasts with sur-
rounding tissues. To measure electrical properties, EIT
uses body surface electrodes, through which applied cur-
rents (or for some systems, voltages) are applied and volt-

ages measured (section 4). The sensitivity and resolution
of EIT (section 5) is determined by the electrode num-
ber and position, as well as the selection and sequence
of electrodes onto which stimulus and measurements are
applied. Using the measured data, EIT images are re-
constructed, using a variety of imaging algorithms (sec-
tion 6). Finally, based on the reconstructed EIT images,
measures of the underlying physiological parameters are
calculated. Many approaches to image analysis have been
developed (section 7) including functional EIT (fEIT) ap-
proaches which look at the temporal evolution of the EIT
voxel waveforms. Table 1 defines terminology used in this
article.

2 EIT Applications
In this section, we review two example applications
(detection of cancerous regions in breast tissue using
frequency-difference EIT, and imaging of breathing using
time-difference EIT), and then provide a more complete
list of applications and relevant references.

The impedance of tissues increases as a function of
frequency and these impedance spectra are characterized
by “dispersions” where current is able to cross mem-
branes (section 3). Cancerous tissue often has a different
impedance spectrum from non-malignant tissues, largely
due to the increased blood flow (angiogenesis), and the
increased density of tumour stroma (61).

The next example shows EIT for monitoring of the dis-
tribution of gas during breathing. For patients using a me-
chanical ventilator, there is a concern that the lower (de-
pendent) lung regions could become collapsed, so that all
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Table 1: Terminology Used
Term Definition

A/D Analog to digital converter
CEM Complete electrode model
CMRR Common-mode rejection ratio
COPD Chronic obstructive pulmonary disease
D/A Digital to analog converter
EIT Electrical Impedance Tomography
fEIT functional EIT
FEM, F (·) Finite Element Model
FVC Forced Vital Capacity
FEV1 Forced Expiratory Volume in 1 s
FPGA Field-programmable gate array
J Jacobian matrix: ∂yi/∂xj

I Applied current patterns ∈ RNE×NC

λ Hyperparameter for reconstruction
M Mapping from inverse to forward models
N (·, ·) Distributed with mean, covariance
NE Number of Electrodes
NC Number of Current patterns
NF Number of elements in FEM
TV Tidal Volume (breathing) or Tidal Variation

(EIT) or Total Variation (imaging)
τ Time constant
DC Direct current (zero frequency)
p(·) Probability of ·
Q Image prior distribution ∝ Σ−1

x

R Linear reconstruction matrix: x̂ = Ry
σ,σr ,σF Conductivity distribution. ·r: at reference

time. ·F : on forward model.
σ standard deviation (scalar)
Σn,Σx Covariance. ·n: of noise, ·x: of image prior.
W Data covariance ∝ Σ−1

n

v,vr Measured voltage. ·r: at reference time.
y Voltage difference data
x,x̂ Image distribution. x̂: estimated.
ZC,ES electrode-surface contact impedance
ZC,EB electrode-body contact impedance

inspired air is forced to go to the upper regions, increas-
ing the local pressure and stress. Figure 4 illustrates use
of EIT to identify lung regions with low flow.

Here, the parameter of interest is the decreasing con-
ductivity of lung tissue as it expands due to inspired air.
Using continuous measurement, a time-series of EIT im-
ages can be reconstructed. From analysis of the pixel
waveforms in each image, it is then possible to calcu-
late functional parameters, such as the tidal variation (TV)
— the maximum pixel change over a breath. From these
parameters, functional images, such as the tidal variation
image, or a thresholded image to identify low TV lung
regions, can be calculated.

EIT has been proposed for numerous applications. In
some cases, the technology is starting to be used clin-
ically and extensive clinical and experimental data ex-
ists, while, in others, only a preliminary evaluation has
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Figure 3: Block diagram of frequency-difference EIT
imaging of cancerous breast tissue. A: EIT imaging plane
through breast, for which, B: the frequency spectra of
non-malignant (N) and malignant (M) tissue, at selected
frequencies f1, f2 at which the spectra differ; C: recon-
structed frequency-difference EIT image, illustrating typ-
ical blurring and artefacts, and, D: processed EIT image,
selecting regions which exceed a threshold and are of a
minimum size.

been performed. In the rest of this section we provide an
overview and references to a variety of EIT applications.
In many cases, multiple references could be given; we aim
to give an early or important reference.

• Lung function (table 2): EIT is very sensitive to the
contrast between the relatively large gas volumes
moving in the lungs and other chest tissues. EIT
has seen the largest interest for its use in monitor-
ing breathing, since EIT is able to non-invasively
provide information on the distribution of gas within
the lungs, and not only the total flows and volumes.
Clinically, lung function measurement is important
for patients receiving ventilatory support (invasive or
non-invasive) in order to optimize the ventilation set-
tings and to avoid possible ventilator-induced lung
injury. Another useful application for EIT is lung-
function testing for obstructive lung diseases, such
as asthma or COPD (chronic obstructive pulmonary
disease)

• Perfusion and cardiac function (table 3): EIT is sen-
sitive to the movement (perfusion) of (conductive)
blood through the heart and the pulmonary and sys-
temic vasculature. Clinically, the pressures and flows
of blood are relevant to patients in anaesthesia, inten-
sive care and for sports medicine. The signal levels
are lower than those from ventilation, and there are
challenges to separating heart-related signals from
other sources of EIT measurements.

• Neural & brain activity (table 4): EIT is sensitive
to several phenomena of interest for medicine of the
brain and neural system. Nerves change conductiv-
ity when active, and this can be imaged using EIT.
Additionally, there are changes in impedance due to
pathological states, such as stroke.

• Cancerous tissue (table 5) has different impedance
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Figure 4: Block diagram of time-difference EIT imaging
of lungs. A: patient breathing from which an EIT “slice”
image is reconstructed; increasing air volume reduces con-
ductivity, from which, B: time-sequence of reconstructed
EIT images, and C: the time course of a single pixel from
the images. From each pixel, the tidal variation (TV) is cal-
culated and, D: a TV fEIT image is created, from which,
E: a thresholded image shows pixels with low TV.

spectrum from benign tissue (61), due to changes in
cancerous cell morphology, and the angiogenesis in
cancerous regions. In many cases, these contrasts
are larger than those available from other imaging
modalities. EIT screening has been investigated for
numerous types of cancer using either frequency dif-
ference or absolute image reconstruction.

• Other (table 6): Several other medical applications
of EIT have been proposed, which do not fall into
the above categories. We list several here; however,
not all applications are listed.

3 Electrical Properties of Tissues
Electric fields in the body are induced by current applied
through electrodes. The electric field causes ions to move
through the body (measured as conductivity σ). When
those ions are polarized they will also rotate to orient
themselves along the field (measured as permittivity ε).
Permittivity is treated as a function of frequency ω to give
a complex-valued admittivity, σ∗ = σ + jωε. Biological
bodies have cell membranes and structure which can limit
charge separation and trap ions at boundaries (42, 48, 73).
At low frequencies, ions will travel around cell bound-
aries while at high frequencies those charges will move
across cell boundaries at a variety of scales depending on
the wavelength of the field (figure 5).

The modelling of the frequency-dependent admittiv-
ity of various biological materials is sometimes accom-
plished by fitting model parameters to the impedance

Table 2: EIT applications for lung function
Distribution of tidal volume

the spatial distribution of inspired air during each breath,
which varies with ventilator settings (54).

Regions of overdistention, atelectasis
the fraction of lung tissue in pathological states like
overdistention or atelectasis (collapse) is a useful clin-
ical metric for patients management (51, 36).

Recruitment/derecruitment of lung tissue
recruitment of lung tissue refers to the opening of previ-
ously collapsed tissue, while derecruitment is the oppo-
site process (45).

Regional compliance
Compliance characterizes the ease with which lung tis-
sue accepts new volume, and can be characterized by
EIT on a regional basis (∆Z/∆P ) (38).

Respiratory system mechanics
The mechanical properties of the respiratory system can
be characterized by a compliance, resistance and a time
constant (their product). Characterization of such prop-
erties on a regional basis provides useful information on
the state of lung tissue (79).

Opening and closing pressures
these pressures indicate the thresholds at which recruit-
ment and derecruitment occur, and EIT is able to mea-
sure them on a regional basis (78).

Edema and extra-vascular lung water
Pulmonary edema is the accumulation of extra-vascular
fluid in the lungs. It impairs gas exchange and lung func-
tion, and can occur due to left-ventricular insufficiency
or lung tissue injury. EIT has shown some ability to
monitor changes in the amount of lung fluid as a function
of time and intervention (91).

Alarms: one-lung ventilation, pneumothorax
One important clinical requirement is the generation of
alarms when dangerous ventilation conditions exist. EIT
shows the potential to detect several cases of this type
(72).

spectra (28). Two common models are the Debye model
(39) and the Cole-Cole model (34). In general, biologi-
cal tissues in vivo, exhibit a variable admittivity over fre-
quency which is difficult to represent with simple models.

Specific microscopic structures, extracellular matrices
(for example, bone) and tissues combine to form larger
organs over which the electric field is applied. The be-
haviour of heterogeneous structures leads to the appli-
cation of “mixing models” which represent the effective
medium (70). Biological structure also leads to complex
admittivity which is anisotropic. For example, admittivity
will be greater in the direction of muscle fibres than across
those fibres.

EIT systems typically operate at select frequencies, giv-
ing a single and largely real-valued admittivity for each
measurement which is frequently approximated as a sim-
ple but frequency-dependent conductivity σ. This agrees
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Table 3: EIT for perfusion and cardiac function
Regional Distribution of blood flow (86):

The distribution of perfusion in the lungs is an impor-
tant parameter and, clinically, its distribution needs to
match the distribution of ventilation. Some information
is available continuously from frequency-filtering of EIT
data.

Ventilation-perfusion matching (84):
The imaging of whether there is a match of the regional
distribution of ventilation and perfusion is potentially a
useful ability of EIT.

Contrast-based perfusion measurement (44):
Accurate measurement of blood flow is possible with the
use of a hypertonic-saline injection into the veins. The
contrast can be imaged as it propagates through the right
heart, lungs, left heart and into the systemic vasculature.

Cardiac output (24):
The blood flow output of the heart is the heart rate times
the stroke volume, and is an important clinical index.
EIT is sensitive to blood flow and movement of the heart.

Systemic blood pressure (via pulse timing) (87):
Blood pressure changes can be measured by EIT via the
pulse transit time from the heart to the descending aorta.

Pulmonary blood pressure (via pulse timing) (77):
Pulmonary blood pressure changes can be measured by
EIT via the pulse transit time from the heart to the pul-
satile signals in the lungs.

Intravascular fluid responsiveness (92):
Fluid responsiveness is a measure of the hydration state
of a patient. EIT can measure variation in stroke volume
throughout the breathing cycle as an index of inadequate
vascular fluid.

with the quasi-static approximations applied to solve the
forward model’s partial differential equations, as we will
see in section 5.

The conductivity of tissue is strongly affected by the
presence of conductive blood, either in the vasculature
or, pathologically, through hemorrhage. Blood has an un-
usual flow-dependent conductivity; moving blood is sig-
nificantly more conductive (50), and it is not clear the ex-
tent to which conductivity increases during systole are due
to increases in regional blood volumes or conductivity in-
creases.

Errors in the measurement of tissue admittivity can be
introduced by lead inductance and electrode polarization.
A voltage measurement taken on the current driving elec-
trodes (2-electrode measurements) can be compared to
measurements on nearby electrodes (different electrodes
used for current drive and voltage measurement, as a 4-
electrode measurement) to evaluate these errors. Irrespec-
tive of these controls, tissue properties change over time
as the skin sweats, hydration levels change or movement
occurs, which represent confounding factors in evaluat-
ing time-series measurements. Tissue is a biological sam-
ple, so excising material to take measurements changes

Table 4: EIT for neural and brain activity
Stroke (Hemorrhagic vs. Ischemic)

The two main types of cerebral stroke need to be rapidly
distinguished in order to guide emergency treatment.
EIT can potentially fill this role by detecting the con-
ductive blood present in hemorrhagic stroke (82).

Epileptic regions and foci
EIT is sensitive to the conductivity changes in active
epileptic regions, and could potentially help diagnose
and monitor patients (80).

Cerebral perfusion
Blood flow though the brain can be imaged by EIT using
a conductive contrast in the blood flow (6).

Neural activation
Neural activation changes tissue impedance by opening
ion channels in nerves. These changes and the spatial
and temporal pattern of activation can be used to create
4D (3D+time) of brain response to stimulation (13).

Cerebral edema
Fluid accumulation in the brain is in important clinical
concern. EIT shows potential to monitor the changes in
conductive fluid (58).

Table 5: EIT to detect cancerous tissue
Breast cancer screening

EIT has seen several studies investigating its use for
screening for breast cancer (14, 32).

Prostate cancer screening
EIT has been investigated for screening for prostate can-
cer (20, 53).

EIT + mammography
The combination of EIT and mammography has been in-
vestigated. In this case the anatomical information from
mammography can be used to constrain and improve
EIT image reconstruction (33).

EIT + ultrasound
The combination of EIT and ultrasound has been inves-
tigated using the compliment of information from each
modality (88).

the properties of the tissue. These issues lead to a range
of low frequency conductivity values being reported for
many types of tissue (48). In many cases, physiological
changes result in changes in admittivity which can be iso-
lated from these error sources to indicate changes of clin-
ical interest (section 2).

4 EIT Hardware

A typical EIT system consists of a digital controller,
analog-to-digital (A/D) and digital-to-analog (D/A), cur-
rent sources, differential voltage sensors, a mechanism
to switch between electrodes, wiring between the system
and the electrodes, and the electrodes themselves, some-
times embedded in a belt or other structure. A typical
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Table 6: EIT for other applications
Gastric and Intestinal motility

The rate and flow of food in the stomach and intestines
has useful diagnostic value for many conditions. EIT
is sensitive to conductivity-contrasting food and fluids
(69).

Pharyngeal transit times
EIT can be used to measure the rate at which fluid passes
through the pharynx (69).

Bladder volume and emptying
Conductive urine creates a contrast which can be identi-
fied by EIT. There are several uses of this information,
such as monitoring the level of bladder filling (for se-
dated patients), and the rate of bladder emptying (63).

Peripheral Edema
Fluid accumulation in peripheral edema creates a con-
trast which can be identified in EIT images, and monitor-
ing of the accumulation and dissipation is diagnostically
useful (1, 74).

Hemorrhage and blood accumulation
The accumulation of conductive blood in hemorrhagic
tissue can be identified in EIT images, and monitoring
of the level of hemorrhage is clinically useful (83).

Figure 5: Low frequency (left) and high frequency (right)
current flows through a heterogeneous biological medium
along different paths depending on the wave length of the
electric field in relation to the cell size at a variety of scales
according to macroscopic, cellular, ionic and molecular
structure.

digital controller consists of an field programmable gate
array (FPGA) and microcontroller which collaborate to
perform calculations, store data, and transfer the results
to a host system. The FPGA controls the current sources
and measurement functions using A/D and D/A convert-
ers to drive current and measure voltage. Demodulation
and sine wave generation are commonly part of the digital
infrastructure in modern systems.

Low amplitude sinusoidal current (milliamps) is driven
through the body at a pair of electrodes by matched cur-
rent sources (at 180° phase) at a relatively low fixed fre-
quency, typically between 10 kHz to 250 kHz, although
some systems operate below 1 kHz to measure specific
frequencies of interest. Voltage measurements are made
between pairs of electrodes or between electrodes and a
reference (ground) electrode. These “difference” voltage
measurements are in the millivolt to microvolt range, and
are subject to many sources of measurement interference.

New electrodes are selected for both current and voltage
by multiplexing between many electrodes, which can in-
troduce switching transients. Typical systems have six-
teen to sixty-four electrodes.

The complete sequence of electrode pairs used for stim-
ulus and measurement provides a “frame” of data. The
measurements making up a frame are repeated to produce
a time series. Figure 6 illustrates a common sequence of
current stimulation and voltage measurements as part of a
data frame, using two stimulation and measurement pat-
terns. The earliest EIT systems were based on adjacent
(“skip” 0) stimulation and measurement (25), while more
recent systems often use a larger “skip” value to increase
the sensitivity at depth. For an NE electrodes system us-
ing pair-drive and measurement, there are 1

2NE(NE − 3)
measurements to be made, when reciprocal measurements
and measurements on driven electrodes (2-electrode mea-
surements) are avoided (59). Modern EIT systems can
achieve high frame rates (commercial systems provide 50
frames/s) which is enough to detect most physiological
activity. However, system noise performance decreases
with increasing frame rates, so it is recommended to mea-
sure at a rate consistent with the physiology of interest.
The system can be accelerated by adding more current
sources and differential measurement devices at the cost
of additional challenges in achieving and maintaining cal-
ibration between channels.

In principle, EIT hardware should not be difficult to
implement: it operates at low frequency and low current.
Currents are limited by safety concerns which have been
codified in the standards for medical devices (65), limiting
the maximum current to 10 mA at frequencies of 100 kHz
and above (60). Challenges arise from low noise require-
ments, wide dynamic range, and the dramatic decrease in
Common Mode Rejection Ratio (CMRR) at typical EIT
operating frequencies when compared to DC measure-
ments; most operational amplifiers have CMRR perfor-
mance that drops dramatically around 10 kHz. The wide
dynamic range and common mode voltages of the mea-
surements results from taking these measurements at a
variety of locations and electrode separations on the body.
Voltage measurement electrodes adjacent to current elec-
trodes will have the largest voltage difference, while elec-
trodes far from the current carrying electrodes may have
very small differential voltages.

Two types of electrodes are available: polarizable
and non-polarizable electrodes, which are distinguished
by their behaviour at the electrode-electrolyte interface
where an “electrical double layer” of charge forms. For
example, stainless steel and platinum electrodes are po-
larizable, while Ag/AgCl electrodes are not. Ideal po-
larizable electrodes have an interface that behaves as a
capacitor, while ideal non-polarizable electrodes behave
resistively. In either case, movement of the electrode sep-
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Figure 6: Stimulation and measurement patterns using an
adjacent pattern (top row) and a “skip 2“ pattern (bottom
row) for an eight electrode EIT system, in which measure-
ments are not made on driven electrodes. The first col-
umn shows the measurements m11 . . .m1n due to the first
stimulation s1, and the second column shows the measure-
ments m21 . . .m2n due to the second stimulation.

arates the electrical double layer introducing motion arte-
facts into the time-series measurements which resolve as
the double layer reforms. Electrodes are also of a par-
ticular size and can provide a preferential current path
over the skin surface, even when inactive, if the elec-
trode’s internal conductivity is lower than the body (see
figure 8), as is typically the case. The choice between
the two types of electrode is application specific: non-
polarizable electrodes typically use an aqueous gel which
dries over time changing contact impedances, while polar-
izable electrodes can be more susceptible to motion arte-
facts.

5 Forward Problem

The physics of current propagation in the body are deter-
mined by Maxwell’s equations. The term “forward prob-
lem” has been used to describe the calculation of the cur-
rent and voltage distribution in the body and then sensi-
tivity of an EIT system as a function of position. To il-
lustrate, figure 7 shows current streamlines in a finite el-
ement model of the thorax. Current is applied through
a pair of electrodes. As the conductivity of the heart in-
creases due to the presence of conductive blood during
diastole, the pattern of current streamlines and isopoten-
tial lines changes. The moving isopotential lines indicate
the changes in measured voltage on other body-surface
electrodes.

At the relatively low frequencies used in EIT, it can be
approximated as an electrostatic system, which is math-

Figure 7: Illustration of the propagation of current in a
body. In each image, a FEM of a volumetric model of
the thorax is used to simulate the propagation of electric
current from a pair of surface electrodes with the indicated
current source. Blue lines show current streamlines while
the black lines are isopotential surfaces. From the left to
right, an increase of conductivity in the heart (dotted red
lines) is simulated.

ematically equivalent to the heat equation. In this limit,
electric current propagates diffusively and “spreads out”
away from electrodes. This diffusive nature of the physics
of low frequency electric current has two main conse-
quences for EIT. First, EIT is extremely sensitive to any
changes at or near the electrodes. Reconstructed images
can show large artefacts when electrodes move, dry out
(changing contact quality) or are incorrectly modelled in
terms of shape and size. Next, EIT is much less sensitive
further from the electrodes, which is often the region of
interest in the interior of the body. The large ratio in sen-
sitivity between the high- and low-sensitivity regions in-
dicates that EIT image reconstruction is “ill conditioned.”

To derive the equations of the EIT forward problem,
take a body Ω in three-dimensional space with spatial
variable r = (x, y, z). We assume the body has isotropic
conductivity σ(r), permittivity ε(r), and permeability
µ(r), and these properties are potentially inhomogeneous
throughout the body.

EIT systems generally apply fixed-frequency currents
and voltages to the body. For an angular frequency ω,
time-varying properties may be replaced with phasor rep-
resentations, and the time-derivatives with jω. A time-
harmonic current density J(r, t) = J(r)e−jωt is applied
to the surface ∂Ω, and this results, after some settling
time, in an electric field E(r, t) = E(r)e−jωt and mag-
netic field H(r, t) = H(r)e−jωt in the body. Using
Ohm’s law, J = σE, Maxwell’s equations give us,

∇× E = jωµH

∇×H = (σ + jωε)E = σ∗E
(1)

where ∇ is the Del operator ( ∂
∂x ,

∂
∂y ,

∂
∂z ). We define the

complex conductivity or admittivity σ∗ = σ + jωε, and
use (eqn 1) and the identity,∇ · (∇×X) = 0,

∇ · (∇×H) = ∇ · σ∗E = 0, (2)
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When permeability and frequency are sufficiently
small, we can make the approximation, ∇ × E = 0, in
which case the electric field E = −∇φ, is uniquely deter-
mined by a scalar electric potential, φ. This “quasistatic”
approximation is valid when the geometric scales of in-
terest are much smaller than the electromagnetic wave-
length (ω

√
µε)−1 (62). For example, in tissue, µ ≈ 1 and

ε ≤ 10× ε0, so for f = 100 kHz, (2πf
√
µε)−1 ≈ 3 km.

These equations define the Laplace (or Poisson’s) equa-
tion which controls the EIT forward problem

∇ · (σ∗∇φ) = 0, (3)

and is subject to boundary conditions which specify the
normal current (Neumann boundary conditions) or poten-
tial (Dirichlet boundary conditions) at the electrodes. Ad-
ditionally, a reference voltage must be specified at some
point, either at a ground electrode or elsewhere on the
body.

At an electrode, electrical current distributes through
the electrode material and flows into the body, changing
from being carried by electrons to ions at the electrode-
body interface. Especially at low frequency (DC to
100 Hz), the interface is dominated by complicated elec-
trochemical processes; however, for most EIT systems
the frequencies used are such that the electrode-skin
impedance is fairly low, especially when the skin is not
dry or a suitable electrode gel is used.

As mentioned, EIT current density, and therefore sensi-
tivity, is highest at the electrodes and decreases elsewhere.
This means that accurate electrode models are important
for EIT accuracy. Most electrodes are fabricated from
conductive material, and thus offer an “easier” current
path than the bulk material. Figure 8 shows the propa-
gation of current near measurement and drive electrodes,
and illustrates that most current flows near the edges of
electrodes

Several models of electrodes have been used (30), in-
cluding those which assume uniform current magnitude
across each electrode (the “continuum” and “gap” mod-
els). If the electrode material is much more conductive
than the body, a “shunt” model creates a constant voltage
across the electrode. Most recent work uses a “complete
electrode model” (CEM), which accounts for the electri-
cal properties of the electrode material, ZC,ES (31). Here
we distinguish between two parameters of the electrodes
which have both been called the “contact impedance”.
The electrode-body contact impedance, ZC,EB is the load
through which the EIT hardware must send current, while
the electrode-surface contact impedance, ZC,ES , charac-
terizes the electrode material.

Calculation of potential φ throughout the body requires
the solution of (eqn 3) for the boundary conditions given
by the electrode models and each of NC applied pattern
of current to the NE electrodes. No analytic solutions of

A B

Figure 8: Current streamlines near A: passive, and B:
drive electrodes, using 2D FEM with ZC,EB = 0.01.

this equation exist for arbitrary geometries, so it must in-
stead be approximated numerically. The most common
numerical technique is the finite element method (FEM),
which is preferred because it allows refinement in regions
of high current, such as near the electrodes (52). In most
cases, EIT researchers have used the most simple models,
first-order tetrahedral elements. The body is discretized
into NF finite elements, and the complex admittivity in
each is represented by a vector σF ∈ CNF . For nota-
tion, the vectors representing the state of the system or a
frame of measurements at a given time are in bold font
and consist of complex values of the given size. The FEM
calculates a voltage distribution throughout the body for
each admittivity distribution, σF , and applied electrode
current distribution, I. From the body voltage distribution,
a vector of voltages at electrodes is extracted. By succes-
sively calculating the electrode voltages for each applied
current pattern, a frame, v ∈ CNm , of EIT data is sim-
ulated. Many FEM software packages allow vectorized
solution of the voltages for multiple current patterns. The
maximum number of independent measurements possible
onNE electrodes is 1

2NE(NE−1), due to reciprocity (i.e.
the sensitivity is unchanged if drive and measurements are
interchanged) (66). If one further restricts the measure-
ments to be away from the stimulus electrodes, prevent-
ing 2-electrode measurements which are more sensitive
to contact impedance and electrode movement, this re-
moves an additional N measurements leading to the oft
quoted 1

2NE(NE − 3). Typically, a data frame is consid-
ered to represent the impedivity of the body at an instant;
however the measurements are slightly asynchronous for
serial, multiplexed EIT systems.

Here, we introduce a notation to consistently describe
the forward computations for absolute, frequency differ-
ence and time difference EIT. We define the “measured
data”, y = v for absolute EIT, and y = v − vr, for
difference EIT, as it reconstructs the change in admittiv-
ity between the measurement of interest, v, and vr. Two
variants of difference EIT are also used: normalized dif-
ference EIT uses y = (v− vr)./vr, where ./ is element-
wise division; and frequency difference EIT, where the
measurements, vr must be scaled such that y = v − kvr
(85). The measured data, y, can have complex values cor-
responding to the in- and out of-phase components, al-
though at low frequencies (below a few hundred kHz) the
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conductive (in-phase) component dominates.
The image parameters, x, are defined similarly to the

“measured data”. For absolute EIT, the reconstructed im-
age of interest is the admittivity, x = σ, while for differ-
ence EIT, the image of interest is the admittivity change,
x = σ−σr with respect to its value at a reference instant.
It is also common to parameterize the image differently
to the forward FEM, such that we calculate σF = Mσ,
where Mi,j is a coarse-to-fine projection, representing the
volume fraction of FEM element j in each image element
i. This different parameterization is useful when using a
refined mesh in the vicinity of electrodes, which helps an
accurate forward calculation, but is not desired in the im-
ages. The FEM-based forward calculation is represented

y = F (x)|σ=σr
. (4)

For difference EIT, vr is calculated at an assumed refer-
ence conductivity, σr.

For an imaging system, it is important to characterize
the sensitivity in terms of the expected change in mea-
sured parameters for a given change in parameters of in-
terest. The sensitivity serves to characterize the ability
of a given EIT configuration (body shape, electrode posi-
tions, stimulation and measurement pattern) to detect con-
trasts of interest. The sensitivity is also an important part
of the image reconstruction process. Sensitivity is repre-
sented by a Jacobian, J, or sensitivity matrix. Each com-
ponent [J]i,j represents the sensitivity of measured data, i
to image parameter j.

Ji,j =
∂

∂σj
F (x)i

∣∣∣∣
σ=σr

. (5)

The matrix, J, may be calculated by direct differentiation
of the FEM system matrix formulation (94), and by using
adjoint field methods (76). Direct differentiation requires
a custom FEM solver, while the adjoint field methods can
accept the output of packaged FEM algorithms, by inte-
grating over the inner product of the electric fields pro-
duced by stimulation and measurement patterns in each
image element. Efficient implementation of either meth-
ods results in the same algorithm (10). It is sometimes
useful to approximate J using small changes in each im-
age region to calculate a “perturbation Jacobian” (94).
Columns of J represent the change in measurements, ∂v,
due to a conductivity contrast in the corresponding FEM
element, while each row represents the relative contribu-
tion to each FEM element from the corresponding mea-
surement. Figure 9 illustrates the sensitivity of EIT for
several patterns of current injection and voltage measure-
ment.

The sensitivity of EIT in three dimensions presents a
complicated structure, even for a traditional, single plane
of electrode placements. Figure 9 shows a “lens-shaped”

Figure 9: Illustration of vertical (off-plane) sensitivity
of EIT for one (left, with 32 electrodes) and two (right,
with 2×16 electrodes) electrode planes. Data are simu-
lated with a homogeneous elliptic model, and sensitivity
shown on frontal plane through the centre. Sensitivity in
each vertical row is normalized to the maximum value.
Contours at 90%, 75%, 50%, and 25% are shown. For
each figure, the left image uses an adjacent stimulation and
measurement pattern, while the right shows “skip=4”.

sensitive region, in which EIT is sensitive to off-plane
conductivity contrasts.
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Figure 10: The relative EIT sensitivity, S(σc) as a func-
tion of the shape and conductivity of a ROI. The stimula-
tion configuration (subfigure at right) has 16 electrodes in
a central plane (dotted), and has a contrasting cylindrical
ROI with a height/diameter, h, and conductivity σc while
elsewhere σ = 1. The graph shows the normalized EIT
signal, S(σc), as a function of σc for four values of h.

6 Image Reconstruction
Image reconstruction is the term used in the inverse prob-
lems and tomographic imaging literature to describe the
calculation of an image from projection data. Image re-
construction is typically a challenging problem as it is
ill-conditioned and often ill-posed. The ill-conditioning
stems from the large difference in sensitivity between re-
gions (the electrodes and the body centre in EIT). EIT is
also ill-posed because it is not possible to estimate a large
number of image parameters from the limited number of
measurements in each data frame.

Image reconstruction is formulated as an inverse prob-
lem which calculates an estimate, x̂, of the distribution of
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internal properties, x, which best explains the measure-
ments, y. A simplified schema for image reconstruction is
shown in figure 11, which illustrates the process by which
model parameters are iteratively adjusted to fit the mea-
surements (and “prior” image constraints). The recon-
structed image is the model after iterations are stopped
upon convergence.
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Figure 11: Schema for image reconstruction based on
model fitting. EIT data, y, are measured with an instru-
ment from body Ω. Iteratively, a model xk is improved
by updates, ∆x, calculated from the mismatch between
the current forward estimate and sensitivity, and a prior
model. The mapping between image parameters, x, of a
planar slice, and the 3D FEM-based model are illustrated.

Image reconstruction in EIT has traditionally been di-
vided into algorithms for difference EIT (section 6.1) and
absolute EIT (section 6.2). Difference EIT is more sta-
ble and can be feasibly reconstructed with linear tech-
niques, while absolute EIT is a more difficult problem
and requires advanced methods. In contrast to geophys-
ical ERT, in which absolute reconstructions are common,
experimental and clinical EIT has almost exclusively used
difference measurements and algorithms. For successful
absolute reconstructions, it is necessary for the model to
be accurate in terms of body geometry and electrode po-
sitions, shapes and contact impedances, as well as hard-
ware and electronics imperfections. For difference EIT,
shape and electronics modelling inaccuracies are less sig-
nificant, as long as they remain the same between the dif-
ference measurements.

6.1 Difference EIT

The most common approach to difference EIT image re-
construction uses a regularized framework to minimize

the norm

‖y − F (x̂)‖2W + λ2‖x̂− x0‖2Q, (6)

where the first term y − F (x̂) is the “data mismatch” be-
tween the measured data and their estimate via the for-
ward model. W is a data weighting matrix, and represents
the inverse covariance of measurements. The 2-norm rep-
resented as ‖a‖2A = aTAa, for positive definite A. The
second term is the mismatch between the reconstruction
estimate, x̂, and an a priori estimate of its value, x0. Q
is the “regularization matrix”. The relative weighting be-
tween the data and prior mismatch terms is controlled by
a hyperparameter, λ. When λ is large, solutions tend to
be smooth and more similar to the prior; while, for small
λ, solutions have higher spatial resolution, but are noisier
and less well conditioned.

The norm (eqn 6) may be best understood from a
Bayesian maximum a posteriori scheme as follows

p(x|y) =
p(y|x)p(x)

p(y)
∝ p(y|x)p(x) (7)

where p(x|y) is the reconstructed quantity of interest, and
maybe interpreted as the likelihood of the “correct” image
being x given measured data y. Here, p(x) is the “a pri-
ori” distribution of possible image parameters, and p(y)
the distribution of measured data, which is not needed,
since the goal is to find the maximum p(·).

The likelihood of measurements y given image param-
eters x is determined by the forward model and the dis-
tribution of likely noise from the hardware. Modelling
y = F (x)+ν, with noise, ν with a Gaussian distribution,
ν ∼ N (0,Σn), we have

p(y|x) = exp
(
−‖y − F (x)‖2

Σ−1
n

)
. (8)

We represent the inverse covariance of the data weight-
ing matrix, as a product, Σ−1

n = σ2
nW, of a scalar noise

power, σ2
n and a structural matrix W, which represents

the relationship between noise on measurement channels.
In most cases, W is set to be the identity matrix, corre-
sponding to a model of independent and equal measure-
ment channels; however, given a knowledge of the reli-
ability of each measurement channel, W can be used to
represent this reliability during reconstruction (68).

In an inverse problem, it is not sufficient to use only
(eqn 8) to reconstruct images; the very low sensitivity of
measurements to some image parameters (such as voxels
far from the boundary) means that small noise values in
the data result in large noise in the reconstructed images.
Image reconstruction thus requires regularization to im-
pose additional constraints (or penalties) on the images.
We review below a number of regularized schemes.

In our opinion, the most natural way to understand reg-
ularization is through the Bayesian parameter p(x). This
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parameter is called the prior model, or the a priori in-
formation, since it describes information about possible
images, x, before any measurements, y, are made.

Many prior models are used; the simplest computation-
ally is a Gaussian distribution ∼ N (x0,Σx), we have

p(x) = exp
(
−‖x− x0‖2Σ−1

x

)
. (9)

where Σx models the expected amplitude and spatial co-
variance of image parameters. For difference EIT, x0 = 0,
since increases and decreases are equally likely. We rep-
resent the inverse covariance as a product Σ−1

x = σ2
xQ,

of a scalar image power, σ2
x and a structural matrix Q,

which is discussed below. The hyperparameter, λ = σx

σn

represents a ratio of the “strength” of the regularization
and noise constraints.

From (eqn 7), we have

p(x|y) ∝ p(y|x)p(x)

= exp
(
−‖x− x0‖2Σ−1

x

)
exp

(
−‖y − F (x)‖2

Σ−1
n

)
∝ exp

(
−(‖x− x0‖2W + λ2‖y − F (x)‖2Q)

)
.

The MAP (or Maximum a posteriori) solution is the value
x̂ which maximizes p(x|y). It is a posteriori in the sense
that it is our estimate of the image taking into account (i.e.
after) the measurements. Thus,

x̂ = argmax
x

e−(‖y−F (x)‖2W+λ2‖x−x0‖2Q)

= argmin
x
‖y − F (x)‖2W + λ2‖x− x0‖2Q.

(10)

The MAP estimate is when then exponential is maxi-
mized, and the norm has a minimum.

Starting from an estimate x0, the Gauss-Newton
scheme allows an iterative approximation, by, at each step
calculating an update ∆xk, such that

xk+1 = xk + ∆xk, (11)

where at each step, the update would solve the linearized
problem, around the current estimate xk, using Jacobian,
Jk = ∂

∂xF (x)|xk
.

∆xk =
(
JtkWJk + λ2Q

)−1 (
JtkW(y − F (xk) +

λ2Q(x0 − xk)
)

In most cases, a one-step regularized difference EIT so-
lution is used (29), in which case (eqn 12) reduces to a
matrix multiplication, x̂ = Ry, with a reconstruction ma-
trix R, where

R =
(
JtWJ + λ2Q

)−1
JtW (12)

since x0 and F (x0) are zero for difference EIT. In some
cases the matrix to be inverted in (eqn 12) is large, and the

equivalent expression in the “Wiener filter” form may be
used (4):

R = Q−1Jt
(
JQ−1Jt + λ2W−1

)−1
(13)

While the most commonly used image reconstruction
algorithms use Gaussian probability models for image
(eqn 9) and noise (eqn 8) parameters, there are advantages
to the use of other approaches. Using a 1-norm instead
of a 2-norm in (eqn 9) is called “total variation” (TV),
and produces images in which edges are preserved and
not blurred (21) Using a 1-norm instead of a 2-norm in
(eqn 8) produces an algorithm which is less sensitive to
measurement outliers, and has been called “robust error
norms” (22).

6.1.1 Regularization parameters

The behaviour of image reconstruction is controlled by
the selection of the regularization matrix Q and the hy-
perparameter, λ.

Figure 12 illustrates the effect of λ, which controls the
amount of regularization. As λ decreases, the image more
accurately reflects the simulation, but also becomes more
sensitive to noise. This “noise-resolution” trade-off is typ-
ically the most important parameter choice for an EIT
configuration. Its value should be chosen to be the min-
imum (best resolution) which is still able to provide rel-
atively noise-free images. A number of strategies have
been used in the EIT literature to select an appropriate hy-
perparameter value, including the : L-curve (55), Noise
Figure (2), and Image SNR (23).

Figure 12: Reconstructed images of a 2D simulation phan-
tom (top left), for various values of the hyperparameter, λ:
Top: simulated data with no noise Bottom: simulated data
with added Gaussian noise.

The regularization matrix Q imposes a structural
penalty onto image elements. In the simplest case, Q
is diagonal and imposes a penalty on image amplitude,
favouring low-amplitude reconstructions; this is the case
for a Tikhonov or a diagonal matrix (29). Next a matrix
with off-diagonal elements can impose a spatial high-pass
filter to penalize non-smooth components in the image,
such as for a Laplace spatial filter (76). Another approach

11



is to impose regularization in a transformed space, such
as the singular value decomposition (19). The amount of
regularization is chosen by truncating the singular values
at a chosen level. Example images are shown in figure 13,
along with an edge-preserving reconstruction using total
variation (22).

Figure 13: Reconstructed images of a 2D simulation phan-
tom (figure 12) for various values of the structural prior, Q,
in each column. A different value of the hyperparameter,
λ, was used in each row.

6.2 Absolute EIT

Difference EIT is used to determine the change in con-
ductivity between two frames of measurements. Absolute
EIT, by contrast, determines the absolute value of the con-
ductivity from a single frame of measurements.

For an absolute solution, an initial estimate of the
solution σ0 is calculated by fitting a homogeneous (or
some low-dimensional) conductivity model to the mea-
surements. Next, in a loop, the same principle operation
as difference EIT is computed to find a single-step Gauss-
Newton update ∆xk, with regularization, measurement
covariance, prior, and a Jacobian calculated at the current
conductivity estimate. A scaling parameter (0<α<1) for
this update is determined using a line search and by solv-
ing the forward problem at xk+1 = xk+α∆xk then eval-
uating the data misfit and prior penalty terms to find the
minima. This process is repeated until either an iteration
limit is exceeded, a tolerance is achieved for the penalty
function, or the solution fails to progress. This iterative
procedure is illustrated in figure 11.

Absolute EIT is more common in geophysics settings
where the ability to measure before and after a change
can be unusual for many applications. In these geo-
physics applications, it is also common to parameterize
over log conductivity to address the wide range of con-
ductivities that are encountered. Measurements are com-
monly normalized by dividing the measurements calcu-
lated on a forward simulation of the model with a homo-
geneous 1 S/m conductivity, which are called “apparent
resistivity” in geophysics and “measurement normaliza-
tion” in the biomedical communities. The re-scaling of

measurements serves to re-weight the measurement misfit
function so that small amplitude measurements will carry
equal weight. The measurement re-scaling also impacts
estimates of measurement noise, which should be sim-
ilarly scaled, because the apparent signal-to-noise ratio
has changed. Scaling conductivity and measurements has
a significant effect on appropriate values for regulariza-
tion parameters which will sometimes change by orders
of magnitude.

Absolute EIT is typically more challenging than dif-
ference EIT because many sources of error are no longer
cancelled and must be either carefully measured and con-
trolled or incorporated into the reconstruction. The pri-
mary cause of reconstruction artefacts tends to be geo-
metric mismatches between the reconstruction model and
the measured surface, particularly the electrode locations.
Model induced artefacts due to model-measurement mis-
match can be particularly misleading because they will re-
main consistent when reconstruction parameters are var-
ied and over many repeated measurements at the same lo-
cation.

Other important error sources include electrode move-
ment, electrode contact impedance, non-ideal analog cir-
cuits, and non-ideal wiring. Errors can be addressed
through calibration of the EIT systems, careful equipment
installation (electrode layout and contact), noting devia-
tions from planed acquisitions, and measuring actual in-
stalled locations to very high resolution.

7 Image Analysis

After reconstruction of EIT images, the images are anal-
ysed to determine parameters relevant for the physiologi-
cal application of interest. A rich literature of “functional”
EIT (or fEIT) parameters has developed for analysis of
time-sequences of EIT images. Techniques for fEIT anal-
ysis are subdivided by Frerichs et al. (47) into “functional
EIT images” and “EIT measures”.

Figure 14 illustrates the calculation of a “tidal varia-
tion” fEIT image and the measure of “centre of ventila-
tion” calculated from this fEIT image. The fEIT image
is based on an analysis of each pixel (or voxel) wave-
form and a mathematical operation is performed on it.
For tidal variation, the minimum-maximum range is cal-
culated. After calculation of this value for each pixel an
fEIT image is created with the values. From the fEIT im-
age, an EIT measure can be calculated. The centre of ven-
tilation is the coordinates of the centre of mass of the tidal
ventilation fEIT image.

Various types of fEIT images have been defined as il-
lustrated in figure 15. Two basic categorizations are be-
tween measures which can be conducted routinely, and
examination-specific measures, which require specific in-

12



��

�����������������������������������������������������������������������������������������������

�

��

� � � �

�

�

Figure 14: Illustration of calculation of functional EIT im-
ages and measures (adapted from (47)) (A) EIT image se-
quence, from which (B) waveforms are analysed to cal-
culate a tidal variation (TV) parameter, from which fEIT
images (C) are generated. In (D), a horizontal histogram
of breathing in “slices” of the left and right lung is calcu-
lated, from which the centre of gravity (E) in the left and
right lung are determined.

terventions with patients.

• Distribution of Ventilation: EIT measures of ventila-
tion are determined by the tidal (within-breath) vari-
ations of the EIT pixels. These have been measured
using the signal standard deviation (which was ap-
propriate in early, low frame-rate systems, but is no
longer recommended) and by the tidal variation mea-
sure shown in figure 15A.

• Distribution of other lung volumes: EIT allows mea-
surement of the distribution of other physiologically-
relevant volumes, such as forced vital capacity
(FVC) and forced expiratory volume in 1 second
(FEV1).

• Distribution of ratios of lung volumes or flows, such
as the ratio of FEV1/FVC in each image pixel.

• Distribution of Aeration change: The change in aer-
ation is the volume-difference in the lungs between
two time points due to an intervention or physiolog-
ical activity. Typically, this is measured as a change
in end-expiratory lung volume ∆EELV, shown in fig-
ure 15C.

• Frequency analysis of impedance changes: Fre-
quency analysis of impedance changes allows sep-
aration of breathing- and heart-related effects. If no
external timing measures are available, a band-pass
filtered fEIT signal can separate a Cardiac-frequency
(or Pulsatility) fEIT images from the (typically much
larger) Ventilation signal. While these images are
useful, it is worth pointing out that they are subject

to artefacts if the heart rate changes on a beat-to-beat
basis, or if harmonics of the ventilation signal over-
lap with the heart rate. Furthermore, the cardiac-
frequency EIT signal cannot be considered a direct
measure of blood flow (perfusion) since the pulsatile
component of the signal is affected by many other
physiological functions (11).

• Respiratory system mechanics (non-linear compli-
ance): The compliance is a non-linear function of
lung volume, and is low at both low and high lung
volumes due to alveolar collapse (atelectasis) or
overdistention, respectively. EIT-based measures of
respiratory system properties seek to characterize
these aspects of the mechanical properties. First, the
non-linearities in compliance have been character-
ized by: fEIT of landmark pressure points, such as
the lower and upper inflection point pressures, (fig-
ure 15E) or fEIT of opening / closing pressures.

• Respiratory system mechanics (time constants): The
mechanical properties of lung tissue is typically char-
acterized by parameters of compliance (C = L

kPa )
and resistance (R = kPa·s

L ). EIT-derived measures of
volume are mostly proportional to the dynamic com-
pliance, but yield no information on R. Increases
in tissue resistance reflects narrowing of airways and
changes in parenchyma. The time constant τ = RC
of tissue introduces a delay in the ventilation signal,
which results in a change of phase in the regional EIT
signal. The resistance and τ values have been char-
acterized functional EIT measures of time constant
(71) and phase. Other functional measures have tar-
geted Ventilation delay, and the delay of lung tissue
opening and closing.

• Tissue Classification: Functional EIT measures have
been used to classify lung tissue into various states.
For example, regions of overdistention / atelectasis
has been identified using the dynamic compliance
and pressure time-course of the lungs. (36, 51).

• Activation Patterns: Functional EIT measures have
also been proposed for brain EIT images. The pattern
of activation within the cortex following stimulation
has been analyzed using techniques such as optical
flow techniques. (13)

• Pulse Transit time: The movement of pressure pulses
in the vasculature is modulated by the blood pres-
sure. This relationship has been used to measure
both pulmonary- (77) (transit time from heart to
lungs) and systemic-arterial pressure (transit time
from heart to descending aorta) (87).

• Blood flow (perfusion): To obtain measures of blood
flow, it is possible to introduce EIT-contrast agents.
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The main approach has been to inject a bolus of hy-
pertonic saline (at 5-10× normal blood saline levels).
This causes a region of much higher conductivity to
move through the heart and vasculature. Using these
data, EIT images of the blood flow through the heart
and lungs(44), or brain(6) has been demonstrated.
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Figure 15: Overview of types of fEIT images, based on a
scenario in which a mechanically ventilated patient starts
at an initial pressure setting, which is subsequently in-
crease, and finally subject to a slow inflation and defla-
tion manoeuvre. Each letter indicates the type of fEIT im-
ages: A) measures of the distribution of ventilation and of
regional compliance (the illustration shows a measure of
tidal variation), B) measures of regional delays and time
constants (the illustration shows a measure of inspiratory
time), C) measures of regional changes in aeration due
to an intervention (the illustration shows a slow inflation),
and D) measures of manoeuvre timing, and E) measures of
inflation and deflation parameters (the illustration shows
maximum curvature-change points).

8 Discussion and Perspectives
This article reviews Electrical Impedance Tomography
(EIT), a medical imaging technique which uses electrical
current stimulations and measurements at body-surface
electrodes to create images of the distribution of electrical
impedivity (and its changes over time) within the body.
EIT has seen proposed applications in many medical ar-
eas, from imaging lungs, heart and blood flow, brain and
nerves, cancerous tissue and other applications.

Medical EIT is closely related to several other technolo-
gies which use impedance imaging, although these are
typically referred to as ERT – electrical resistance tomog-
raphy, and see use in geophysical imaging and process
tomography. Geophysical imaging with electrical mea-
surements has a long history (12). It is sensitive to the
presence of conductive metallic ores and to conductive
liquids in the soil. In the first application, ERT is used
for mineral exploration, as well as for applications like
archaeological surveys. For its sensitivity to ground wa-
ter, ERT is used for monitoring of engineering structures

(embankments, bridging structures) which can fail when
saturated. It is also used to monitor movement of polluted
ground water (leach) from disposal sites, and for ground
water movement.

Process tomography applications of ERT focus on mon-
itoring of pipes and mixing vessels. In a flowing pipe,
there is often a mixture of liquid, air and sediment. Under
stable conditions, the sediment falls to the bottom and the
air to the top with a layer of flowing liquid between. Un-
der turbulent flow, these layers can mix or blockages can
occur. ERT can usefully monitor these mixture layers. For
mixing tanks, ERT is able to monitor the progressive mix-
ing of constituents.

For medical applications, EIT is seeing an interesting
transition from a largely research-only technique to early
clinical use. There are now several companies which sell
EIT systems to monitor ventilated patients, and EIT is be-
coming part of the hospital procurement cycle. In terms
of publications, there is a strong and growing rate of cita-
tions of EIT in the medical literature. On the other hand,
non-ventilation applications of EIT have not yet seen a
transition to clinical use. We see a continued slow ac-
ceptance of EIT in the market for ventilation monitoring.
In addition, EIT monitoring of infants offers significant
advantages over other techniques, especially given the ex-
tremely sensitive skin of premature infants.
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diosynchronous Signals in EIT”, Proc. Conf. EIT2017, p.73 Dart-
mouth, USA, Jun 21–24, 2017.

[12] LA Allaud, MH Martin; “Schlumberger, the history of a tech-
nique”, John Wiley and Sons, New York. 1977.

[13] KY Aristovich, GS dos Santos, BC Packham, DS Holder. “A
method for reconstructing tomographic images of evoked neural
activity with electrical impedance tomography using intracranial
planar arrays”, Physiol meas. 35:1095–1110, 2014.

[14] M Assenheimer, O Laver-Moskovitz, D Malonek, D Manor, U Na-
haliel, R Nitzan, A Saad “The T-SCAN technology: electrical
impedance as a diagnostic tool for breast cancer detection.” Phys-
iol Meas 22:1–8, 2001.

[15] DC Barber, BH Brown, IL Freeston; “Imaging Spatial distributions
of resistivity using Applied Potential Tomography”. Electronics
Letters 19:93–95, 1983.

[16] MS Beck, RA Williams, “Process tomography: a European inno-
vation and its applications” Meas Sci Technol 7:215–224, 1996

[17] M Bodenstein, M David, K Markstaller; “Principles of electrical
impedance tomography and its clinical application.” Crit Care Med
37:713–24, 2009.

[18] L Borcea; “Electrical impedance tomography.” Inverse Prob
18:R99–R136, 2002.

[19] A Borsic, WR Lionheart, CN McLeod CN, “Generation of
anisotropic-smoothness regularization filters for EIT. IEEE trans-
actions on medical imaging.” 21:579-587, 2002.

[20] A Borsic, R Halter R, Y Wan, A Hartov, KD Paulsen, “Sensitivity
study and optimization of a 3D electric impedance tomography
prostate probe“ Physiol Meas 30:S1–S19, 2009.

[21] A Borsic, BM Graham, A Adler, WRB Lionheart, “In vivo
Impedance Imaging with Total Variation Regularization”, IEEE T
Medical Imaging 29:44–54, 2010.

[22] A Borsic, A Adler, “A primal dual-interior point framework for
using the L1-norm or the L2-norm on the data and regularization
terms of inverse problems” Inverse Prob, 28:095011, 2012.

[23] F Braun, M Proença, J Solà, J-P Thiran, A Adler “A
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G Zick, N Weiler, I Frerichs “Regional lung opening and clos-
ing pressures in patients with acute lung injurys”, J Critical Care,
27:3:323.e11–323.e18, 2012.

[79] S Pulletz, M Kott, G Elke, D Schadler, B Vogt, N Weiler, I
Frerichs “Dynamics of regional lung aeration determined by elec-
trical impedance tomography in patients with acute respiratory dis-
tress syndrome”, Multidiscip Respir Med 7:44, 2012.

[80] A Rao, A Gibson, D Holder. “EIT images of electrically induced
epileptic activity in anaesthetised rabbits”, Med Biol Engin Com-
put 35:327, 1997.

[81] T Riedel, I Frerichs; “Electrical impedance tomography.” Eur
Respir Mon 47:195–205, 2010.

[82] A Romsauerova, A McEwan, L Horesh, R Yerworth, RH Bayford,
DS Holder “Multi-frequency electrical impedance tomography
(EIT) of the adult human head: initial findings in brain tumours,
arteriovenous malformations and chronic stroke, development of
an analysis method and calibration.” Physiol Meas 27:S146–S161,
2006.

[83] RJ Sadleir, T Tang, AS Tucker, P Borum, M Weiss “Detection of
intraventricular blood using EIT in a neonatal piglet model.” Conf
IEEE EMBS pp 3169-3172, 2009.

[84] A Schibler, TMT Pham, AA Moray, C Stocker “Ventilation and
cardiac related impedance changes in children undergoing correc-
tive open heart surgery” Physiol Meas, 34:1319–1327, 2013.

[85] JK Seo, J Lee, SW Kim, H Zribi, EJe Woo; “Frequency-difference
electrical impedance tomography (fdEIT): algorithm development
and feasibility study”, Physiol Meas 29:929–944, 2008.

[86] HJ Smit, ML Handoko, A Vonk Noordegraaf, TJ Faes, PE Post-
mus, PM de Vries, A Boonstra “Electrical impedance tomogra-
phy to measure pulmonary perfusion: Is the reproducibility high
enough for clinical practice?” Physiol Meas 24:491-499, 2003.
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