Discrete Ill-Posed and Rank-Deficient Problems
Overview

- Definitions
 - Inversion, SVD, Picard Condition,
 - Rank Deficient, Ill-Posed
- “Classical” Regularization
 - Tikhonov and the Discrete Smoothing Norms
- Discretization
 - Quadrature and Galerkin
Overview 2

• Discretization
 – Discrete Picard Condition
 – Quadrature
 – Galerkin

• Other Techniques
 – TSVD
 – CG Iteration
Inversion

\[Ax = b \]

- Solve for \(x \), when \(A \) and \(b \) are known
 - (or for \(A \), when \(x \) and \(b \) are known)
 - via Inverse, Pseudo-Inverse

\[x = A^{-1} b \quad x = A^t b \]
SVD

- **SVD(A)**
 - or GSVD(A,L)

\[A = U \Sigma V^T = \sum_{i=1}^{n} u_i \sigma_i v_i^T \]

\[U^T U = V V^T = I_n \]

\[A^T A = V \Sigma^2 V^T \]
\[A A^T = U \Sigma^2 U^T \]

- **Singular Values**
- **Singular Vectors**
 - Left & Right
Rank Deficient

- Gap in the Singular Values
- Approx. Zero
 - Noise!
Ill-Posed

- No gap in values
- Lots of small values
(Discrete) Picard Condition

Continuous

\[\int_0^1 K(s, t) f(t) = g(s) \]

\[K(s, t) = \sum_{i=1}^{\infty} \mu_i u_i(s) v_i(t) \]

\[f(t) = \sum_{i=1}^{\infty} \frac{(u_i, g)}{\mu_i} v_i(t) \]

\[\sum_{i=1}^{\infty} \left(\frac{(u_i, g)}{\mu_i} \right)^2 < \infty \]

Discrete

\[A x = b \]

\[A = U \Sigma V^T = \sum_{i=1}^{n} u_i \sigma_i v_i^T \]

\[x = A^T b = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i \]

\[\ldots \]

denominator must decrease faster than numerator or we get an unbounded solution
Regularization

- “First regularize, then discretize.”

- Minimize “residual norm”
 - with Constrained Values, $\min \|r\|_2^2, \ x \in S$
 - with Constrained Size, $\min \|r\|_2^2, \ w() < \delta$

- Minimize Size, with Constrained Residual
 $\min \|w()\|_2^2, \ ||r||_2^2 < \delta$

- Minimize Residual and Size
 $\min \{||r||_2^2 + \lambda^2 ||w()||_2^2\}$

\[r = \int_0^1 K(s, t) f(t) - g(s) \]
Tikhonov Regularization

\[
\min \left\{ \|Ax - b\|_2^2 + \lambda^2 \|L(x - x_0)\|_2^2 \right\}
\]

- Solved by Least Squares using SVD
Discrete Smoothing Norms

• Choices for “L”:
 - Identity Matrix
 - Weighted Diagonal
 - Discrete Derivative Approximations
The identity matrix...

Additional constraint:

- Minimize the absolute value of the solution

\[
\min \left\{ \| Ax - b \|_2^2 + \lambda^2 \| I(x - x_0) \|_2^2 \right\}
\]
L = diag(w)

- A diagonal matrix of weights on x...

Additional constraint:

- Minimize a weighted selection of values of the solution

\[
\min \left\{ \|Ax - b\|_2^2 + \lambda^2 \|W(x - x_0)\|_2^2 \right\}
\]

\[
W = \text{diag} \left(w \right)
\]
L = L1 or L2

- A banded matrix approximating a derivative operator...

Additional constraint:
- Minimize “total variation” in values of the solution (but still allow steep gradients)

\[
\min \left\{ \|Ax - b\|_2^2 + \lambda^2 \|L_1(x - x_0)\|_2^2 \right\}
\]
Priors

- Allow the addition of “a priori” information about the result

\[
\min \{ \|Ax - b\|_2^2 + \lambda^2 \|L(x - x_0)\|_2^2 \}
\]

- Using no prior is the same as a zero prior

- Weight solution towards expectation
L-curve

(fake plot)

\[\log \| Lx \| \quad \log \| Ax - b \| \]

under-smoothing over-smoothing

(fake plot)
Discretization of Integral Equations

- **Quadrature**

 \[
 \int_0^1 \phi(t) \, dt \approx \sum_{j=1}^n w_j \phi(t_j)
 \]

 \[
 a_{ij} = w_j K(s, t) \quad b_i = g(s_i)
 \]

 \[\text{choose } w_j\]

- **Galerkin**

 \[
 a_{ij} = \int_0^1 K(s, t) \phi_i(s) \psi_j(t) \, ds \, dt
 \]

 \[
 b_i = \int_0^1 g(s) \phi_i(s) \, ds
 \]

 \[\text{choose } \phi, \psi\]

- **Raliegh-Ritz**

 If \(\phi = \psi \), \(K \) is symmetric, and nodes are co-located
Solution

(fake plots)
Discussion

References