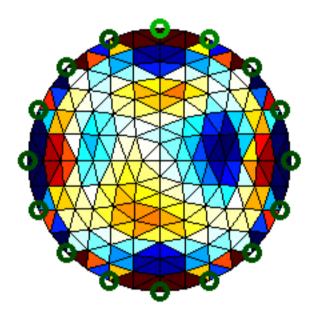
Artifacts due to Conformal Deformations in Electrical Impedance Tomography

Alistair Boyle¹, William R.B. Lionheart², Andy Adler¹

¹ Systems and Computer Engineering, Carleton University, Ottawa, Canada ² School of Mathematics, University of Manchester, Manchester, UK

Boundary Movement



Uncorrected

For difference EIT, errors in the boundary cause significant artifacts.

With chest EIT, breathing results in continuous changes in the boundary shape.

(Boyle, *et al* 2008 "Evaluating Deformation Corrections in Electrical Impedance Tomography", EIT Conference 2008)

Anisotropic Changes

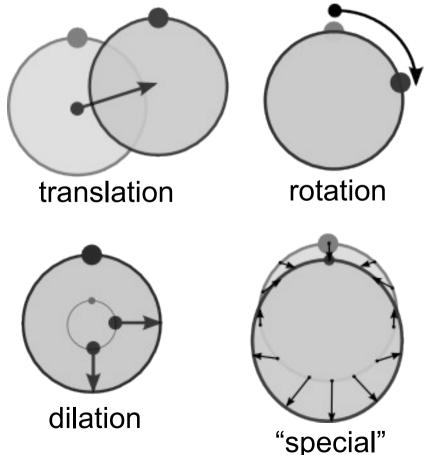
- Some boundary changes, upon reconstruction, result in anisotropic conductivities:
 - theoretically, for an infinite number of electrodes, non-conformal changes in boundary shapes and electrode locations can be uniquely determined (Lionheart,1998);
 - in some cases, conductivity and shape changes can be recovered using a combined image reconstruction model of both conductivity and shape changes (Soleimani et al, 2006).

Anisotropic Changes

- Some boundary changes, upon reconstruction, result in anisotropic conductivities:
 - theoretically, for an infinite number of electrodes, non-conformal changes in boundary shapes and electrode locations can be uniquely determined (Lionheart,1998);
 - in some cases, conductivity and shape changes can be recovered using a combined image reconstruction model of both conductivity and shape changes (Soleimani et al, 2006).

Conformal Deformations (two dimensions)

- A deformation that locally preserves the angles between vectors.
- Four types:
 - translation,
 - rotation,
 - dilation, and
 - inversion/reflection.



Examples

$$z \rightarrow \frac{az+b}{cz+d}$$
, $ad-bc \neq 0$

Our "special" example

Möbius

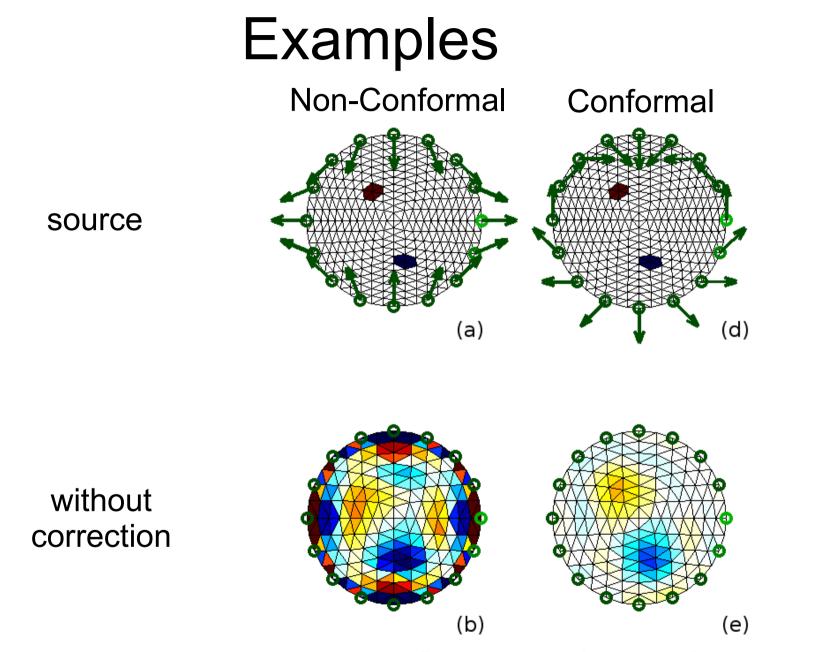
$$z \rightarrow z + a z^2 = z(1+az)$$

where
$$z = x_1 + i x_2 \rightarrow (x_1 + X_1) + i (x_2 + X_2)$$

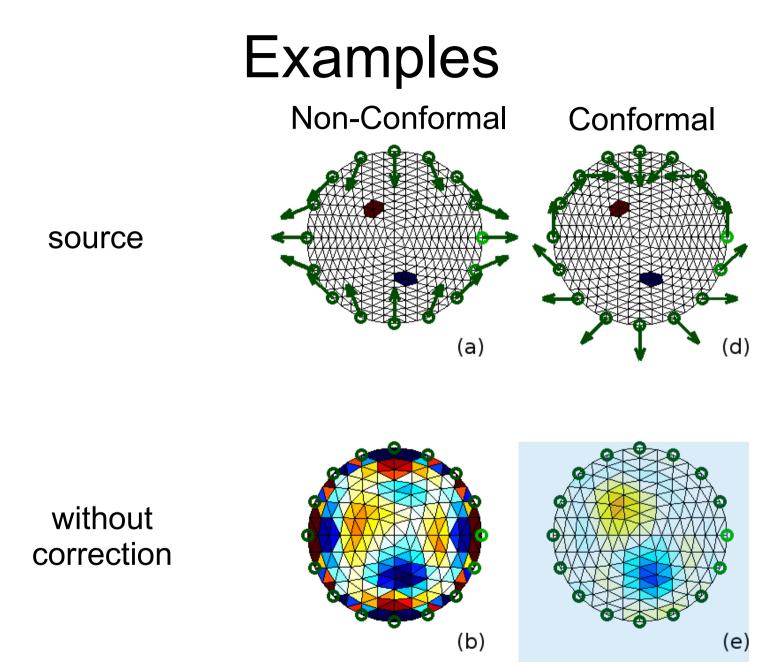
Conformal Deformations

Conformal deformations

 (and only conformal deformations)
 do NOT result in anisotropic conductivity
 artifacts since they have locally preserved
 the angles through the deformation.



(Boyle, *et al* 2008 "Evaluating Deformation Corrections in Electrical Impedance Tomography", EIT Conference 2008)



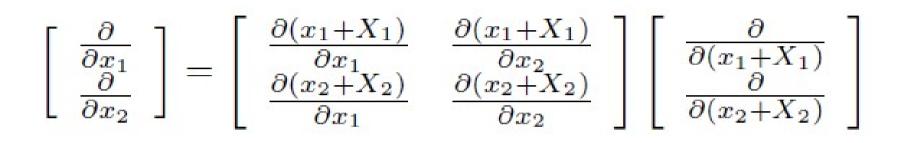
(Boyle, *et al* 2008 "Evaluating Deformation Corrections in Electrical Impedance Tomography", EIT Conference 2008)

governing equation $\nabla \cdot \sigma \nabla \Phi = \begin{cases} 0 & \text{inside} \\ J_n & \text{on the boundary} \end{cases}$

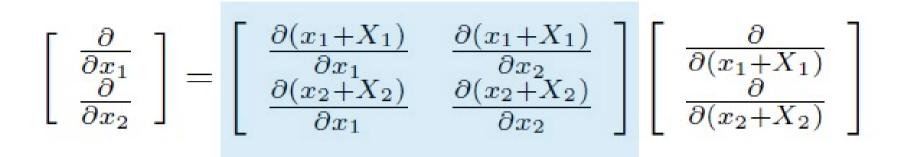
for a conformal deformation the conductivities match before and after:

$$\nabla \cdot \sigma_c \nabla \Phi_c(x_1, x_2) = \nabla \cdot \sigma_m \nabla \Phi_m(x_1 + X_1, x_2 + X_2)$$

A Bit of Math...



A Bit of Math...



For a Given Conformal Deformation

• Satisfy the Cauchy-Riemann equations:

where
$$X = X_1 + i X_2$$

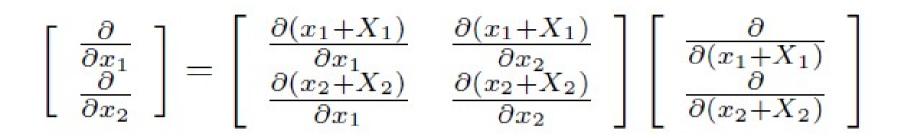
"the motion"

where
$$x = x_1 + i x_2$$

"the basis", ie: x and y axis

$$\frac{\partial X_1}{\partial x_1} - \frac{\partial X_2}{\partial x_2} = 0 \qquad \qquad \frac{\partial X_1}{\partial x_2} + \frac{\partial X_2}{\partial x_1} = 0$$

A Bit of Math...



$$\frac{\partial X_1}{\partial x_1} = \frac{\partial X_2}{\partial x_2} = A - 1 \qquad \qquad \frac{\partial X_1}{\partial x_2} = -\frac{\partial X_2}{\partial x_1} = B$$

A Bit of Math...

$$\begin{bmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial(x_1+X_1)}{\partial x_1} & \frac{\partial(x_1+X_1)}{\partial x_2} \\ \frac{\partial(x_2+X_2)}{\partial x_1} & \frac{\partial(x_2+X_2)}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial(x_1+X_1)} \\ \frac{\partial}{\partial(x_2+X_2)} \\ \frac{\partial}{\partial(x_2+X_2)} \end{bmatrix}$$

$$\frac{\partial X_1}{\partial x_1} = \frac{\partial X_2}{\partial x_2} = A - 1 \qquad \qquad \frac{\partial X_1}{\partial x_2} = -\frac{\partial X_2}{\partial x_1} = B$$

Substituting and taking the inverse...

$$\begin{bmatrix} \frac{\partial}{\partial(x_1+X_1)} \\ \frac{\partial}{\partial(x_2+X_2)} \end{bmatrix} = \underbrace{\frac{1}{A^2+B^2} \begin{bmatrix} A & -B \\ B & A \end{bmatrix}}_{T} \begin{bmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \end{bmatrix}$$

$$\nabla \cdot \sigma \nabla \Phi = \begin{cases} 0 & \text{inside} \\ J_n & \text{on the boundary} \end{cases}$$

 $\nabla \cdot \sigma_c \nabla \Phi_c(x_1, x_2) = \nabla \cdot \sigma_m \nabla \Phi_m(x_1 + X_1, x_2 + X_2)$ $\Phi_c(x_1, x_2) = \Phi_m(x_1 + X_1, x_2 + X_2)$ (given same boundary measurements) $\sigma_c = TT^T \sigma_m \text{ where } TT^T = 1/(A^2 + B^2)$

$$\sigma_c = \frac{1}{A^2 + B^2} \sigma_m$$

$$\nabla \cdot \sigma \nabla \Phi = \begin{cases} 0 & \text{inside} \\ J_n & \text{on the boundary} \end{cases}$$

 $\nabla \cdot \sigma_c \nabla \Phi_c(x_1, x_2) = \nabla \cdot \sigma_m \nabla \Phi_m(x_1 + X_1, x_2 + X_2)$ $\Phi_c(x_1, x_2) = \Phi_m(x_1 + X_1, x_2 + X_2)$ (given same boundary measurements)

$$\sigma_c = TT^{\mathrm{T}}\sigma_m$$
 where $TT^{\mathrm{T}} = 1/(A^2 + B^2)$

$$\sigma_c = \frac{1}{A^2 + B^2} \sigma_m$$

$$\nabla \cdot \sigma \nabla \Phi = \begin{cases} 0 & \text{inside} \\ J_n & \text{on the boundary} \end{cases}$$

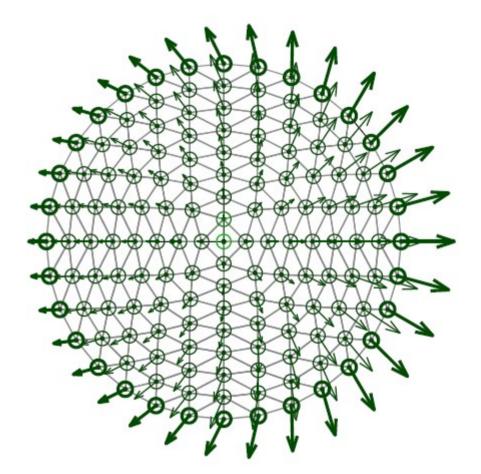
$$\nabla \cdot \sigma_c \nabla \Phi_c(x_1, x_2) = \nabla \cdot \sigma_m \nabla \Phi_m(x_1 + X_1, x_2 + X_2)$$
$$\Phi_c(x_1, x_2) = \Phi_m(x_1 + X_1, x_2 + X_2)$$

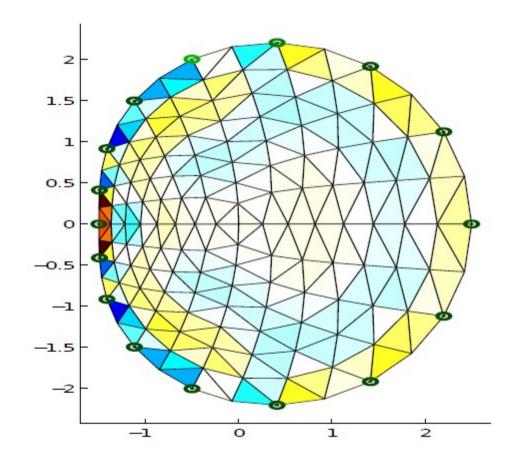
(given same boundary measurements)

$$\sigma_c = TT^{\mathrm{T}}\sigma_m$$
 where $TT^{\mathrm{T}} = 1/(A^2 + B^2)$

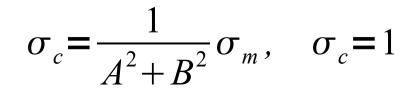
$$\sigma_c = \frac{1}{A^2 + B^2} \sigma_m$$

Example





 $z \rightarrow z + z^2/2$



Discussion

- Conformal changes don't cause anisotropic conductivities and, thus can't be reconstructed from measurements alone.
- Can apply a better understanding of conformal motions to the reconstruction algorithms:
 - remove the conformal component when analyzing performance, or
 - choose appropriate conformal motion if selecting desired "artifacts" in a difference image

Thank you.

Questions?

Acknowledgement: This work was supported by a grant from NSERC Canada.