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Introduction
Artifacts in the images created using Electrical Impedance Tomography (EIT) due to movement of the
boundary in difference imaging have been an issue, particularly in pulmonary EIT where chest movement
due to breathing and posture change is a regular event.[1] With the recent development of algorithms to detect
some types of boundary movement directly from the EIT measurements, it has become possible to correct
for many of these boundary distortions by assuming an isotropic medium.[2][3] The further classification of
boundary movement into two types, conformal movements and those that are not, provides the opportunity
for further refinement of this algorithm.[4] In this paper, we discuss the conformal movements and their
properties and show, through the governing conductivity equation for EIT, that conformal movement of an
isotropic conductivity domain results in a new isotropic conductivity where the change in conductivity is
directly related to the conformal movement.

Conformal Vector Fields
Let X be a vector field, assumed to be small in magnitude. A domain Ω is distorted by the map x 7→ x+Xε.
This vector field X indicates the velocity of change in shape over time everywhere over the domain, where
multiplying the vector field by some small time ε will give a map that is a new geometry for the domain.

A conformal map is one that preserves the angles but not necessarily lengths between vectors on the
domain. If the map x 7→ x+Xε is a conformal map, then the vector field X is referred to as an infinitesimal
conformal map, known classically as an infinitesimal conformal motion, conformal Killing field or more simply
a conformal vector field.

A conformal vector field is defined by the fact that, if the distorted domain is to have an isotropic field
(e.g. conductivity in EIT) consistent with the boundary conditions, then for a change in the boundary of
the domain Ω, the vector field X must be conformal and sufficiently smooth. Therefore, X is a conformal
vector field if and only if the conformal Killing field equation is satisfied (the symmetrized derivative of X
is a multiple of the identity) (1). [5, §3.7] [6, §1.4]

∂Xi

∂xj
+
∂Xj

∂xi
= αδij (1)

where α is a scalar on the domain Ω.[5, (3.7.3)] In two-dimensions, summing over i and j, we see from taking
the trace of (1) that α must be the divergence of X.
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∂Xj

∂xi
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(
∂X1
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+
∂X2

∂x2

)
δij (2)

Now, setting i = j = 1, gives the first Cauchy-Riemann equation, and on the other hand, setting i = 1, j = 2
gives the second Cauchy-Riemann equation,

∂X1

∂x1
− ∂X2

∂x2
= 0

∂X1

∂x2
+
∂X2

∂x1
= 0 (3)

Thus, if a function X is differentiable, its derivative is continuous, and it satisfies the Cauchy-Riemann
equations, then it is complex analytic on the part of the plane that satisfies the Cauchy-Riemann equations.
With any complex analytic function, the real and imaginary parts are harmonic conjugate. [7] Specifically,
since the components of a conformal vector field X1 + iX2 are complex analytic and satisfy ∇X1 · ∇X2 = 0,
‖∇X1‖2 = ‖∇X2‖2, and Laplace’s equation ∇2X1 = ∇2X2 = 0, the components of the vector field (X1, X2)
are perpendicular, but furthermore, ∇X2 is 90◦ anti-clockwise from ∇X1 and equal in magnitude. (3)

With Respect to EIT
Recall the governing conductivity equation for EIT

∇ · σ∇Φ =
{

0 inside
Jn on the boundary (4)
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Figure 1: Conformal deformation artifacts. (a) the green arrows represent the conformal vector field X :
z → z + z2/2 (b) an isotropic conductivity resulting from the conformal deformation [8]

Since the boundary measurements for a conformal movement can also be explained by a change in
conductivity on the domain, (4) can be written as

∇ · σc∇Φc(x1, x2) = ∇ · σm∇Φm(x1 +X1, x2 +X2) (5)

where the subscripts indicate conductivity change c and conformal movement m and Φc(x1, x2) = Φm(x1 +
X1, x2 +X2) since there is no change in the measured voltages at the electrodes on the boundary. Conversion
between the two coordinate systems gives[ ∂

∂x1
∂

∂x2

]
=

[
∂(x1+X1)

∂x1

∂(x1+X1)
∂x2
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∂x2

][
∂
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∂
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]
(6)

where iff X is conformal then from the Cauchy-Riemann equations (3)
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=
∂X2

∂x2
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and taking the inverse of (6) gives[
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]
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]
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[ ∂
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∂
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]
(8)

Assuming an isotropic conductivity, substituting (8) into (5) gives σc = TTTσm where TTT = 1/(A2+B2)
such that the conductivities are the same, divided by a scalar. As expected, the conductivities are equal if
there is no movement. An example of a uniform isotropic conductivity deformed by a conformal map can
be seen in Figure 1.

Discussion
In EIT, simultaneous reconstruction of an accurate isotropic conductivity and conformal deformation are
not possible when only the measurements are known because the deformation does not change the resulting
isotropy of the reconstruction. A conformal deformation does, however, result in specific changes in the
image’s conductivity and this has application in algorithms [3][8] that reconstruct the boundary movement.
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[3] Soleimani M Gómez-Laberge C Adler A 2006 “Imaging of conductivity changes and electrode movement

in EIT” Physiol. Meas. 27 S103–S113
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