
An Implementation of the Markov Chain Monte

Carlo Technique

Alistair Boyle
Biomedical Engineering

Carleton University
Ottawa, Ontario, Canada

alistair.js.boyle@gmail.com

April 14, 2009

Abstract

Markov Chain Monte Carlo was used in the solution of regularized
Computed Tomography back projection. The effect of reducing the infor-
mation used in reconstruction was investigated and regions of increased
variance around some types of image artifacts were observed.

1 Introduction

This report summarizes the investigation of a technique called “Markov
Chain Monte Carlo” that is employed to explore the posterior distribution
of two-dimensional Computed Tomography (CT) images.

1.1 Computed Tomography

Computed Tomography (CT) images are resolved using one of a number
of numerical techniques collectively referred to as tomosynthesis.

In a CT scan, an image of a target is reconstructed by emitting x-rays
from a source and collecting corresponding measurements on the other
side of the target. In first-generation CT scanners, these x-ray particles
are emitted in a parallel plane by the x-ray source.[1] As an x-ray travels
through the target, some of the energy of the x-ray is absorbed by the
target. Denser regions absorb greater amounts of energy, such that a
dense region within the target has a relative reduction in the measured
energy behind that denser region. (Figure 1)

An image of the internal structure of the target is reconstructed from
a set of measurements. A large set of measurements may be required to
obtain enough information to reconstruct an accurate image. The neces-
sary information is obtained by taking many measurements from slightly
different angles around the circumference of the target.

1

1.1 Computed Tomography 1 INTRODUCTION

Figure 1: X-ray projections through a target; the measurements change as the
angle of the emitted x-rays changes.

The process of obtaining measurements can be modelled mathemati-
cally using the Radon transform. Let (x(t), y(t)) be a straight line, a single
x-ray particle travelling through the target. The line can be defined in
terms of the perpendicular distance from the origin s and the angle from
the x-axis α along the line t through A–A′. (Figure 2)

(x(t), y(t)) = t(sin α,− cos α) + s(cos α, sin α) (1)

Using this definition of a line, the Radon transform is the line integral:

R[f](α, s) =

Z ∞

−∞
f(x(t), y(t))dt (2)

=

Z ∞

−∞
f(t(sin α,− cos α) + s(cos α, sin α))dt (3)

Figure 2: Radon transform variables[6]: a line along t through A–A′ can be
defined in terms of the angle from the x-axis α and perpendicular distance from
the origin s. The line t cuts through a region that’s density is defined by f(x, y).

2

1.2 Discrete Projection 1 INTRODUCTION

To find the image, given the measurements (the inverse solution), the
Fourier Slice Theorem can be employed. It can be shown that, with an
infinite number of measurements, a completely accurate reconstruction
can be built.[6] Unfortunately, this is not particularly helpful for practical
reconstructions since we are limited to a finite number of measurements.
In practical CT systems, the number of measurements that can be taken
is further restricted by physical limits to the range of angles from which
measurements can be taken (e.g. dental x-rays) and x-ray exposure limits
for the target.

1.2 Discrete Projection

The Radon transform was discretized by means of an interpolatory linear
projection matrix for a given angle α. This projection matrix takes an
image and transforms it into measurements consisting of discrete values
on a line perpendicular to the direction of the x-rays.

The interpolatory linear projection matrix is derived by first taking
the rotation of [x y]T onto the new basis [t s]T.»

t
s

–
= R(α)

»
x
y

–
=

»
sin(α) cos(α)
cos(α) − sin(α)

– »
x
y

–
(4)

The rotation is applied to a set of coordinates representing rays through
the image and a summation along each ray t gives the density of the
image pixels projected onto the target for a given angle α. Rays that pass
through the square pixels of the original density are interpolated when
the ray does not pass through the exact centre of the pixel such that a
single pixel of the original image may be assigned to two or three pixels
in the projection. (See makeproj(), Appendix A.2.)

The resulting matrix is called the projection matrix P (α). A series
of these projection matrices with differing angles α are concatenated to
calculate a set of projections b. This matrix describes the forward solution
for projection and is referred to as the sensitivity matrix H.

H =

264 P (α1)
P (α2)

...

375 (5)

The inverse problem, that of finding the image u from the measure-
ments b can be solved such that

Hu = b → u = H†b (6)

Solving the inverse problem corresponds to minimizing the 2-norm resid-
ual arg min{||Hu− b||22}.

An analysis of the sensitivity matrix H by Singular Value Decompo-
sition (SVD) shows the problem to be rank-deficient since the singular
values show a significant gap.(Figure 3) This indicates that small changes
in the measurements will be magnified into large changes in the image. In-
deed, adding a small amount of Gaussian white noise to the measurements

3

2 TRADITIONAL REGULARIZATION

(1%) results in an image with no recognizable features. The ill-posed na-
ture of the problem is exacerbated by reducing the angles and/or the
number of projections which reduces the amount of information on which
the reconstruction can be based.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 50 100 150 200

Figure 3: Singular values for the sensitivity matrix with 6 projections, 30◦ apart.
Vertical-axis: singular value magnitude, horizontal-axis: nth singular value. A
significant gap in the singular values between the 231st and 232nd leaves 15
very small singular values which, when H is inverted, significantly magnify the
effect any noise in the measurements.

2 Traditional Regularization

Solving the inverse problem is a challenge due to the ill-posed nature of the
sensitivity matrix H. To arrive at a solution that converges to a reasonable
estimate of the true image, additional information must be added to the
system of equations. This can be done by adding “regularization” to the
inverse problem.

Various criteria can be used in attempting to restrict the possible so-
lution set of the inverse problem, such as the following:

• minimizing the residual norm while constraining the solution’s val-
ues,

arg min{ ||Hu− b||22 } , u ∈ S (7)

• minimizing the residual norm while constraining the solution’s mag-
nitude,

arg min{ ||Hu− b||22 } , L(u) < δ (8)

where L is a function that is a measure of the magnitude of u,
referred to as a “smoothing norm”;

• minimizing the magnitude while constraining the residual norm,

arg min{ ||L(u)||22 } , ||Hu− b||22 < δ (9)

and

4

2 TRADITIONAL REGULARIZATION

• minimizing the residual norm and the solution magnitude together
(Tikhonov Regularization),

arg min{ ||Hu− b||22 + λ2||L(u− u0)||22 } (10)

where λ is a hyper-parameter that determines how much regulariza-
tion to apply and u0 represents a prior knowledge of the expected
solution.

Some possible choices for the discrete smoothing norm L are as follows:

• the identity matrix I, representing a penalty on the total magnitude
of the solution,

• a diagonal set of penalty weights diag(w), which allows the appli-
cation of non-uniform penalties to the magnitude of the solution in
different regions, and

• discrete approximations of derivatives, the first-order derivative L1,
second-order derivative L2, and so on.

This report focuses on Tikhonov regularization where the identity ma-
trix was selected as an initial discrete smoothing norm. This proved to
be satisfactory for regularizing the image enough to converge to a solu-
tion, but the image contained a significant amount of noise. A second
choice of smoothing norm was a one-dimensional first-derivative smooth-
ing norm which succeeded in reducing noise in that dimension. Finally,
a discrete smoothing norm that approximates a first-order derivative in
two-dimensions was selected. This significantly reduced the noise in the
image.

A zero prior was selected (u0 = 0) since no a priori structural knowl-
edge of the original image was assumed.

The hyper-parameter was initially selected through trial-and-error and
was followed by selection through application of the L-curve approach
which chooses a hyper-parameter value that is an optimal trade-off be-
tween the residual norm and the smoothing norm magnitudes. [2] (Fig-
ure 4)

log || Ax-b ||

lo
g

 ||
 L

x
 ||

Figure 4: L-curve; o marks the optimal hyper-parameter value; on the x-axis,
moving too far to the left represents under-regularizing the solution while mov-
ing too far to the right represents over-regularizing the solution.

5

3 STATISTICAL REGULARIZATION

3 Statistical Regularization

A statistical approach to the inverse problem recognizes that all variables
in the problem can be modelled as random variables with a probability
distribution. The distribution of a variable reflects the degree of certainty
in that variable’s true value. The random variable is represented by its
uppercase counter-part such that u 7→ U and b 7→ B, and the probability
of that random variable having a specific value is P (u) or P (b).

From a Bayesian perspective, the data about the problem can be classi-
fied into three types: prior or marginal probabilities, conditional probabil-
ities, and posterior probabilities. The a priori information is represented
as a marginal distribution P (b), while the forward model, the probability
of the output given the input, is represented as a conditional probabil-
ity P (b|u). The posterior distribution P (u|b), the likelihood of the input
given the output, is given by Bayes formula

P (u|b) =
P (b, u)

P (b)
=

P (b|u)P (u)

P (b)
(11)

The prior distribution of the measurements P (b) acts as a uniform normal-
izing constant and can therefore be ignored for most numerical solution
techniques.

If the random variables are viewed as having a Gaussian distribution,
then the bias and variance of those variables has an intuitive meaning
corresponding to the mean error and uncertainty respectively.

Viewing the solution in terms of its bias and variance offers a number
of insights into the solution. First, it clearly indicates how much confi-
dence should be placed in the solution. A large variance indicates little
confidence in the variable’s value. Second, when a “true” value is known,
it helps to indicate the bias in a variable and can thus help to identify
trade-offs in bias and variance of a technique. Third, it places emphasis
on choosing a prior, where not choosing a prior is the same as selecting a
zero prior.

Traditional regularization techniques obtain a single estimate of the
solution, in many cases by removing the ill-posed nature of the solution in
a somewhat ad-hoc manner, asking “what is the value of this variable?”
The statistical approach turns this question around to instead ask “what
is our information about this variable?” [3]

A couple of techniques for obtaining an estimate of the solution are
the Maximum A Posteriori (MAP) estimate, the Conditional Mean (CM),
and the Maximum Likelihood (ML).

xMAP = arg max{ P (u|b) } (12)

xCM = E{u|b} =

Z
uP (u|b)du (13)

xML = arg max{ P (b|x) } (14)

For the MAP estimate, if the distribution of the conditional probability
P (u|b) is Gaussian, then the maximum of the distribution is the mean. For
the ML estimate, finding the maximum often corresponds to solving the

6

4 MARKOV CHAIN MONTE CARLO

non-regularized inverse problem and, in ill-posed or rank-deficient inverse
problems, is not likely to converge.

Unfortunately, in many cases the conditional probability P (b|x) is not
available or is difficult to obtain which makes the use of Bayes formula
(11) infeasible. One solution to this problem is to explore the posterior
distribution more directly through a technique such as Markov Chain
Monte Carlo.

4 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) refers to a combination of two sta-
tistical techniques: Markov Chain probabilities and the Monte Carlo
method. The two basic algorithms for implementing MCMC are the
Metropolis-Hastings and the Gibbs Sampling algorithms.

4.1 Monte Carlo

The Monte Carlo method refers to a method where random, uncorrelated
samples are drawn with replacement. This sampling technique is applied
in sampling from a posterior distribution, integration in high-dimensional
spaces, simulated annealing, and learning algorithms.

The general steps in the Monte Carlo method are to define the range
of the inputs, draw a set of samples with replacement, perform some
calculation on each sample, and find some information about the ensemble
of the calculations.

One illustrative example of the Monte Carlo technique is in building
an estimate of π. To start, draw a square, and then draw a circle inside
the square that touches the edges of the square. Throw a set of markers
into the square (the randomly drawn samples), and determine for each
marker if it is within the circle. The fraction of the markers inside the
circle is approximately π/4. [7]

In general, Monte Carlo methods will converge by the “law of large
numbers”: [7]

P

lim

N→∞

1

N

NX
i=0

xi = µ

!
= 1 (15)

The Monte Carlo method can be improved in some scenarios by getting
the algorithm to sample in regions that are more significant.

4.2 Markov Chain

A Markov Chain is “a mathematical model for stochastic systems whose
states, ... are governed by a transition probability. The current state in
a Markov chain only depends on the most recent previous states.” [9] A
first-order Markov Chain only depends on the previous state, while an
m-th order Markov Chain depends on the last m states.

Combining the two concepts, the simplest form of Markov Chain Monte
Carlo is a “random walk” where the last sample is used as the basis for

7

4.3 Metropolis-Hastings 4 MARKOV CHAIN MONTE CARLO

deciding the next “step” based on a distribution, such as a normal dis-
tribution with a given variance σ2 and a mean centred at the current
location. This concept is the basis for the Metropolis-Hastings algorithm.

4.3 Metropolis-Hastings

The Metropolis-Hastings algorithm can approximate any distribution P (x)
so long as a reasonable estimate of the distribution can be calculated for
a given location x. For each iteration of the algorithm, a new location is
chosen from a proposal density x′ ∼ Q(x′; xt) where Q is a density based
on xt. The new location is accepted based on an acceptance ratio:

a =
P (x′)Q(x′; xt)

P (xt)Q(xt; x′)
(16)

where a is the likelihood of accepting the new location. If a ≥ 1, the new
location x′ is accepted. If the proposal density Q is symmetric, then only
the relative probabilities of the old and new location affect the outcome.
If accepted, the current location is updated xt+1 = x′, then the algorithm
repeats.

An example of a simple proposal density is the normal distribution

Q(x′; xt) ∼ N (xt, σ
2I) (17)

such that a move with the variance σ2 from xt will be proposed.
If starting at a random location, a period of iterations will pass while

the algorithm moves to the significant regions of the distribution. This
period is referred to as a “burn-in” period. The burn-in period is de-
pendant on the variance of the proposal density since a small variance in
the proposal density will result in small steps for the random walk, but
a large variance may fail to explore the probability of interest sufficiently
and will also result in a low acceptance rate since the probability of the
new location P (x′) is likely to be small.

A generalization of the Metropolis-Hastings algorithm that removes
the lost work due to rejected proposals is the Gibbs Sampler.

4.4 Gibbs Sampling

A Gibbs Sampler can be used to approximate the joint probability distri-
bution P (b, u) which in turn approximates Bayes formula (11)

P (u|b) ∝ P (b, u)

The Gibbs sampler approximates the joint probability by taking the con-
ditional probability of each variable based on all other variables. This is
the definition of a Markov Chain with a stationary distribution approx-
imating the joint probability distribution. A Gibbs sampler requires at
least two dependant variables to alternate between.[8]

The main advantage of Gibbs sampling is that it’s easier to sample
from the conditional probabilities rather than integrate over the multiple
variables of a joint probability distribution (a multidimensional integra-
tion problem).

8

5 RESULTS

The Gibbs sampler can be seen as a generalization of the Metropolis-
Hastings algorithm in the sense that it is proposing moves to new locations
using kernels Q that are the conditional probabilities, and the proposal is
always accepted. The Gibbs sampler converges not because of the accep-
tance of a proposal but because the proposed moves are directly related
to the conditional probabilities.

While both Gibbs Samplers and the Metropolis-Hastings algorithms
do converge, convergence can be very slow in instances where there are
regions of low probability separating regions of high probability since the
algorithms traverse the probability distribution. Getting from one region
to the other can take a large number of tries. A second failure mode
occurs when the likelihood of a particular outcome significantly outweighs
other outcomes. The algorithm can return long sequences relating to a
particular outcome without providing information on the other outcomes
such that an unreasonable number of samples must be taken to obtain an
approximation of the true distribution. Both of these issues imply that a
very large number of samples may be required to obtain a good estimate
of the true posterior distribution.

5 Results

An original image containing two rectangular targets was simulated using
a forward model that projects the two-dimensional image onto a one-
dimensional line thus simulating the x-ray process. Gaussian white noise
was added to each projection at 10% of the mean amplitude of all projec-
tions.

Three scenarios were simulated:

1. a full angle (0◦ – 180◦) set of projections with many (60) evenly
spaced projections,

2. a full angle (0◦ – 180◦) set of projections with very limited (10)
evenly spaced projections, and

3. a limited angle (0◦ – 90◦) set of projections with very limited (10)
projections.

The resulting projections were interpolated at a 2:1 ratio to avoid an
inverse crime where the forward and inverse model discretizations exactly
match giving unreasonably optimistic reconstruction results. The forward
model was computed on an 80x80 pixel image while the reconstructions
were built on a 40x40 image.

Each image was reconstructed using a discrete smoothing norm that
approximates a first-order derivative in two dimensions. A Gibbs Sam-
pler was employed to take 500 samples of the image, where the hyper-
parameter and image values were used as variables. For each iteration,
the pixels of the image were treated as independent Gaussian distributed
variables and were thus drawn as a set. The image prior u0 was zero, but

9

5 RESULTS

noise was added which implied a degree of uncertainty in the prior.

P (u|λ, b) ∝ exp

„
−1

2

λ2

σp
2
||L(u− u0)||2 −

1

2σb
2
||b−Hu||2

«
(18)

η ∼ N (0, σb) (19)

ζ ∼ N (0, σp) (20)

u =

»
σb
−1H

λσp
−1L

–† »
σb
−1b + η

λσp
−1Lu0 + ζ

–
(21)

where the variance of the projection noise variance σb
2 was assumed to

be known exactly (the variance introduced in the forward stage of the
problem), and the prior noise variance σp

2 was 10% of the projection
noise variance.[3]

For each iteration, the conditional probability of the hyper-parameter
λ was calculated based on a Rayleigh model of the hyper-parameter (since
the hyper-parameter should have a positive value) conditioned on the most
recent image u.

The hyper-parameter is assigned a Rayleigh distribution since it must
be a positive value.

P (λ) =
λ2

λ0
2 exp

−1

2

„
λ2

λ0
2

«2
!

, λ > 0 (22)

and the conditional probability of the image based on the hyper-parameter
is

P (u|λ) =
λn

σp

p
(2π)n

exp

„
−1

2

λ2

σp
2
||L(u− u0)||2

«
(23)

where n is the dimensionality of the data, in this case n = 40×40 = 1600.
The conditional probability of the hyper-parameter can be found: by

using Bayes rule (11), by assuming that the image is conditionally inde-
pendent of the hyper-parameter, and by assuming that the measurements
are independent of the hyper-parameter.

P (u, b|λ) = P (u|λ)P (b|λ), if cond. indep. (24)

P (b) = P (b|λ) (25)

P (u, b) = P (u|b)P (b), by Bayes (26)

then P (λ|u, b) =
P (u, b|λ)P (λ)

P (u, b)
(27)

=
P (u|λ)P (b|λ)P (λ)

P (u, b)
(28)

=
P (u|λ)P (b)P (λ)

P (u|b)P (b)
(29)

=
P (u|λ)P (λ)

P (u|b) (30)

Recognizing that P (u|b) is a normalizing constant

P (λ|u, b) ∝ P (u|λ)P (λ) (31)

∝ λ(n+2) exp

−1

2

λ2

σp
2
||L(u− u0)||2 −

1

2

„
λ2

λ0
2

«2
!

(32)

10

5 RESULTS

From this distribution, a new hyper-parameter λ was drawn λ ∼ P (λ|u, b).
[3]

For each iteration, the sensitivity matrix H was also recalculated with
normally distributed projection angles with a variance of 1◦, simulating
modelling errors in the system.

The starting point for the Gibbs sampler was taken to be an estimate
of the image

u =

»
H
λL

–† »
b

λLu0

–
(33)

and a conservative prior for the hyper-parameter λ0 = 10 was selected.
By starting with these values, rather than a random image and a smaller
hyper-parameter, the burn-in period is removed or significantly reduced
since the algorithm is starting somewhere within the desired distribution.

The image u and hyper-parameter λ were saved for each iteration.
A histogram of the hyper-parameter was also plotted which illustrated

how the hyper-parameter distribution for each scenario differs. The hyper-
parameter is plotted log10 with the mode of the distribution indicated
beneath the plot.

For each scenario, the image titled “MAP” is the mean of the images.
The variance image is normalized against the MAP image and plotted
log10 because of the large variance in some pixels. The maximum and
minimum values shown under the variance image are log10 normalized.

The choice of method in plotting the variance is somewhat subjective,
and it should be recognized that the regions where the mean value is high
naturally appear as regions of reduced variance in the corresponding plot.
Of particular note, are the regions which show large variance and mean
since these regions represent significant regions of uncertainty.

The outcome for the three scenarios can be seen in Figure 5, Figure 6,
and Figure 7. (See Appendix A.1 for code used to generate these figures.)

11

5 RESULTS

Figure 5: Results for 500 iterations, 60 projection angles over 180◦

Figure 6: Results for 500 iterations, 10 projection angles over 180◦

12

6 DISCUSSION

Figure 7: Results for 500 iterations, 10 projection angles over 90◦

6 Discussion

In Figure 5, the reconstructed image showed sharp edges around the target
objects and limited variance except near the centre of the image where
some noise appears. The mode of the hyper-parameters was found to be
1.77 × 10−6. The noise speckling exhibited in the image is particularly
strange since it seems to occur on alternating pixels.

In Figure 6, the reconstructed image showed significantly blurred edges
around the target objects and much greater variance across the entire
image. The actual range of the variance is quite similar to Figure 5. The
variance near the corners of the targets seems to be quite high in some
cases which indicates uncertainty about those corners. The mode of the
hyper-parameters was found to be 3.44×10−3 which indicates significantly
more smoothing was applied when compared to Figure 5.

In Figure 7, the reconstructed image showed surprisingly sharp edges
around the target objects but also an interesting swirl pattern through
the image. This swirl in the image is likely due to the lack of informa-
tion in the range of projection angles available to reconstruct the image.
The variance over the swirls indicates that there is a large amount of
uncertainty about them, particularly in contrast to the regions that are
identified as targets in the original image. This contrast is particularly ap-
parent when considering that the target objects and the swirls near their
maxima appear to be near the same magnitude which indicates that the
normalization applied to the variance should be equivalent. The mode
of the hyper-parameters was found to be 4.46 × 10−6 which indicates

13

6.1 Projection Model Errors 6 DISCUSSION

smoothing similar to Figure 5.

6.1 Projection Model Errors

The code for projecting the pixels of the image is one source of potential
errors in the system. The current implementation uses a square pixel and
projects the pixel onto a line. Because of the square shape of the pixel,
projections at angles that are not 90◦ will result in variation in the spread
of the pixels onto the projection. The situation will be worst at 45◦ where
the pixels of the image will be spread across 3 pixels of the projection
since the diagonal of the square is wider than the length and breadth.

A solution to this problem would be to treat the pixels as circular. An
image pixel will therefore be split into at most two projection pixels. A
further advantage of this technique is that the area of the pixel allocated
to each portion of the projection is solely a function of the distance from
the centre of the image pixel since the circular pixels are now radially
symmetric. Therefore, the calculation of how much of each pixel falls into
each projection ‘bin” is a matter of finding how far each ray falls from the
centre of each pixel and then calculating the area fraction for each pixel.

The bi-axial behaviour of the current implementation of the projection
approximation may explain some of the speckling seen most clearly in
Figure 5. A plot of the fractional area versus distance from the centre of
a circle at which a ray splits the circular pixel (Figure 8) shows that a
linear approximation of the circular pixel may be good enough to remove
most of the artifacts. (See Appendix A.3 for code.)

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

A

s/r

Figure 8: Fractional area of a circle A split by a ray s/r from the centre

6.2 Discrete Smoothing Norm

A modification that might have made a significant difference in the ef-
fectiveness of the algorithm is the selection of discrete smoothing norm.
The original image has sudden jumps in magnitude when crossing the
image, and these changes are not handled well by a discrete smoothing
norm such as the first-derivative approximation. This smoothing norm
will try to smooth out those edges as can be seen in Figure 6 where the
hyper-parameter has been increased relative to Figure 5.

14

6.3 Run Times 6 DISCUSSION

A better choice for discrete smoothing norm, provided the nature of
this image was known ahead of time, might be the Total Variation (TV)
smoothing norm. TV applies the 1-norm, instead of the 2-norm, to the
inverse problem and thus penalizes the total variation in the image rather
than the jumps near object boundaries.

6.3 Run Times

Run times for the computation on the images was found to be a limitation
in a number of ways. It was found through trial-and-error that the solution
time for the inverse matrices grew significantly if the images were made
much larger than 40 × 40 pixels. At this size, calculations took between
approximately 5 and 10 seconds, depending on the number of angles used
in the reconstruction.

The MCMC algorithm, assuming no burn-in period, still has a po-
tentially slow convergence rate, and therefore, many iterations of the al-
gorithm are required to arrive at a precise answer. The benefit of time
consuming computations is the additional knowledge as to the distribution
of the answer, but it comes at the cost of a significant growth in compu-
tation time. At 5 seconds an iteration, 500 iterations takes 1.38h. This is
a significant growth in the computational effort required. Suggestions in
the literature of 5000 iterations (13.8h) seem an unreasonable cost unless
the additional information has significant value.

Generating Figure 5 took one hour while Figure 6 and Figure 7 took
1.5 hours which represents a linear but significant growth in the amount of
time required to get an answer back from the image computing algorithm.

If the additional information is judged worthwhile, some consideration
to optimization and parallelism of the algorithm is due. On the surface
there appear to be limited opportunities for parallelism since each itera-
tion depends on the previous iteration. One potential solution would be
to run an initial set of iterations to exceed the burn-in period followed by
many independent processors computing iterations following the jump-off
point at the end of the burn-in. The results of all runs could then be
accumulated to derive the final distribution.

6.4 Bias and Variance

One aspect that was not examined from the computed data sets, due to
time constraints, was the bias and variance of the resulting MCMC runs
when compared to the true images. It would be interesting to see the
bias and variance of the solutions when comparing various regularization
techniques as a means of judging the costs and benefits of those techniques.
As well, for each of those techniques, it would be instructive to be able
to see how the hyper-parameter selection affects the bias and variance in
different regions of the image.

It would be expected, for example, that the bias of first-derivative dis-
crete smoothing norms would be significant in regions of the image where
there are rapid changes. One would expect that the results would be sig-
nificantly different for regularization schemes with different characteristics
such as Total Variation.

15

7 CONCLUSION

7 Conclusion

An algorithm for Markov Chain Monte Carlo employing a Gibbs Sam-
pler was implemented based on a Tikhonov regularization scheme with
a discrete smoothing norm that approximates a first-derivative. Images
for three scenarios were generated: full angle projections with many pro-
jections, limited angle projections with limited projections, and full angle
projections with limited projections. The images produced by the algo-
rithm were of reasonable quality. The variance of the image was found to
increase in some regions of the image where artifacts existed.

Computational requirements were found to be a limiting factor in the
size of the images and length of the MCMC runs. The additional in-
formation in terms of hyper-parameter and image distributions provided
interesting insights into the functioning of the MCMC algorithm, sources
of error in the model, and the image and hyper-parameter distributions
themselves.

16

REFERENCES REFERENCES

References

[1] Kak A Slaney M, Principles of Computerized Tomographic Imaging,
Society for Industrial and Applied Math, 2001

[2] Hansen P, Rank-Deficient and Discrete Ill-Posed Problems: Numeri-
cal Aspects of Linear Inversion, SIAM monographs on mathematical
modelling and computation, 1998

[3] Kaipio J Somersalo E, Statistical and Computational Inverse Prob-
lems, Springer-Verlag New York Inc, 2005

[4] Duda R Hart P Stork D, Pattern Classification, 2nd Ed, John Wiley
& Sons Inc, 2001

[5] Computed Tomography, Wikipedia,
http://en.wikipedia.org/wiki/Computed tomography, visited Apr 8,
2009

[6] Radon Transform, Wikipedia, http://en.wikipedia.org/wiki/Radon transform,
visited Apr 8, 2009

[7] Monte Carlo method, Wikipedia,
http://en.wikipedia.org/wiki/Monte Carlo method, visited Apr
10, 2009

[8] Gibbs Sampling, Wikipedia, http://en.wikipedia.org/wiki/Gibbs sampling,
visited Apr 12, 2009

[9] MCMC Tutorial, http://www.civs.ucla.edu/MCMC/MCMC tutorial.htm,
visited Apr 5, 2009

17

A APPENDIX: CODE

A Appendix: Code

This appendix contains the Octave code used to generate the images in
this report. The code has not been run in MatLab but should be usable
with some minor adjustments to syntax.

A.1 procedural

This code is the procedural sequence used to generate the figures in this
report. It calls the makeproj() function. (See Appendix A.2.)

#! /usr/bin/octave −−persist
% initial source
% from http://www.sce.carleton.ca/faculty/adler/elg7173/notes/elg7173-backprojection.html
% and heavily modified beyond all recognition

puts("Markov Chain Monte Carlo inverse solver for CT back projection\n");
puts(" (C) Alistair Boyle, 2009\n");

delta = 0.1; % noise variance = delta * mean projection
% hyper parameter for regularized image (-1 & LCURVE=auto) 10

hp sel = 2; % = 1e-4 is the L-curve number
L sel = 2; % regularization matrix 0=I 1=x-smooth 2,3=x-y-smooth 4=x-y-xy-smooth

% noise proj std is calculated (known)
noise prior std = delta/10;
angle var=1; % amount of variance in angle estimates for model
K = 500;% how many iterations of the Gibbs sampler?

e=80; % number of elements in the image [e x e]
na=60; % number of projection angles to use 20

printf(’ %dx%d image -> %dx%d reconstruction\n’,e,e,e/2,e/2);
printf(’ %d projection angles\n’,na);

% Generate a sample image
function [H, x, y, img] = sensitivity matrix(e,angles,rlim=1)

r = linspace(−rlim,rlim,e);
[x,y]= meshgrid(r,r);
img = (x.^2 + y.^2) > rlim;
img(x >.45 & x<.65 & y>−.05 & y<.45) =1; 30

img(x >−.55 & x<−.25 & y>.45 & y<.65) =1;

% calculate projections proj sample projections

% create sensitivity matrix by building it from the projection matrices
H = [];
for ang= angles; %[0:ma/na:ma-0.1];

prm= makeproj(ang*(pi/180),x,y);
H = [H; prm];

end 40

end

rlim=1;
ma=90; %180*(na-1)/na; % maximum angle to slice from (degrees)
angles=linspace(0,ma,na);

18

A.1 procedural A APPENDIX: CODE

[H, x, y, img] = sensitivity matrix(e,angles);
plen= size(x,1);

% create the projections from the sensitivity matrix
proj = H* img(:); 50

% add noise
noise=randn(size(proj));
noise proj std = delta*diag(mean(proj));
proj += noise proj std*noise;

% prevent an inverse crime: shrink to a courser grid
% reduce projections
r=2; % reduce by 60

convert=zeros(size(proj,1)/r,size(proj,1));
for i = 1:size(proj,1)/r

convert(i,(i−1)*r+1:(i)*r) = ones(1,r)/r;
end
proj = convert*proj;

% generate new H matrix (model)
e=e/2;
[H, x, y] = sensitivity matrix(e,angles);
plen= size(x,1); 70

function imbp = solve inv(A, b, x, y, rlim, hp = 0, L = 0, x0 = 0)
% backprojection reconstruction imbp (simple CT backprojection)
% Unfiltered backprojection may be formulated as using the transpose of
% the sensitivity matrix as the inverse.
% Sensitivity Matrix (A) == Jacobian
plen = prod(size(x));

80

if(L == 0)
L = eye(size(A));

end
if(x0 == 0)

x0 = zeros(plen,1);
end

imbp = (hp^2*L’*L + A’*A)\(A’*b + hp^2*L’*L*x0);
end

90

imbp = solve inv(H,proj,x,y,rlim);

L = speye(size(H,2)); % penalize total size of solution (L0)

% use 1d first deriv. approx
if(0) % for some reason octave doesnt like if,elif when the first if gets hit
elif(L sel == 1) % x-smoothing

L(1,1) = 0; 100

for i = 2:plen*plen
L(i,i−1) = −1;

19

A.1 procedural A APPENDIX: CODE

end
elif(L sel == 2) % x-y-smoothing

L = L*2;
L(1:plen,1:plen) = 0;
for i = plen+2:plen*plen

L(i,i−1) = −1;
L(i,i−plen) = −1;

end 110

elif(L sel == 3) % x-y-smoothing 2
L = L*4;
L(1:plen,1:plen) = 0;
for i = plen+2:plen*plen−plen−1

L(i,i−1) = −1;
L(i,i+1) = −1;
L(i,i−plen) = −1;
L(i,i+plen) = −1;

end
elif(L sel == 4) % x-y-xy-smoothing 120

L = L*8;
L(1:plen,1:plen) = 0;
for i = plen+2:plen*plen−plen−1

L(i,i−1) = −1;
L(i,i+1) = −1;
L(i,i−plen) = −1;
L(i,i+plen) = −1;
L(i,i−1+plen) = −1;
L(i,i+1+plen) = −1;
L(i,i−1−plen) = −1; 130

L(i,i+1−plen) = −1;
end

end

% draw new hp
% x = current image
% hp0 = hyper-parameter prior
% n = number of elements in x
function hp sel=draw hp(x,hp0,n) 140

hp=logspace(−10,2,500); % choose a range for hp
p=hp.^(n+2).*exp(−1/2*hp*sum(x.^2)−1/2*(hp/hp0).^2+(n+2)/2*log10(hp));
% get the CDF
p=cumsum(p);
p = p/p(end); % normalize
% draw from a uniform distribution
n=rand();
s=find(p>n);
hp sel = hp(s(1));

end 150

prior = zeros(plen*plen,1); % not using a prior right now. . .

imbp samples = zeros(plen*plen,K);
hp = ones(1,K)*hp sel;
printf(’Starting %d MCMC iterations. . .\n’,K);
printf(’ angle variance = %g\n’,angle var);
printf(’ projection noise variance = %g\n’,noise proj std^2);
printf(’ prior variance = %g\n’,noise prior std^2);

20

A.1 procedural A APPENDIX: CODE

printf(’ hyper parameter prior = %g\n’,hp sel); 160

puts(’ ’);
for k = 1:K

printf("%d “,k);
t=0;
if(k==2)

tic();
end
noise proj = noise proj std*randn(size(proj)); % assuming we know the noise variance!
if(k==1)

noise prior = 0; 170

else
noise prior = noise prior std*randn(plen*plen,1); % assuming we know the noise variance!
hp(k) = draw hp(L/noise prior std*(imbp samples(:,k−1)−prior),hp(1),plen*plen);

end
% add noise to angles in the model
H = sensitivity matrix(e, angles+angle var*randn(size(angles)));

% calculate image from noisy projections and prior
imbp samples(:,k) = solve inv(H/noise proj std,proj/noise proj std+noise proj,x,y,rlim,hp(k),L/noise prior std,prior/noise prior std+noise prior);
if(k==2) 180

printf(’<-%gsx%d=%ds ’,t=toc(),K,t*K)
end

end
printf(’\nMCMC completed.\n’);
printf(’ hyper parameter mode = %g\n’,mode(hp));

function plot img(img,T="",mask=[],range=[−0.1 1.1])
plen=round(sqrt(size(img(:))(1))); % shouldn’t need rounding. . .
img= reshape(img, plen, plen); % turn it back into a square matrix
if(size(mask) == size(img)) 190

img = img.*mask+(ones(size(mask))−mask);
else

printf(’warning: plot_img %0s mask does not match image size\n’,T);
end
if(size(range) != [1 2])

range = [min(min(img)) max(max(img))];
end
hold on;
imagesc([−1 1], [−1 1], img, range);
xlabel(sprintf(’min %g, max %g’,range(1), range(2))); 200

title(T);
end

imbp reg = mean(imbp samples’)’; % equiv to MAP
imbp var = (std(imbp samples’)’).^2 ./ abs(imbp reg); % standard deviation of the solution
% convert to log, so we can actually see something useful

figure();
colormap(bone); 210

% mask off this from the image
mask = ones(size(x));
mask((x.^2 + y.^2) >= rlim) = 0;

subplot(2,2,2);

21

A.2 makeproj A APPENDIX: CODE

plot img(imbp reg,’MAP’, mask);

subplot(2,2,4);
plot img(log10(imbp var),sprintf(’log10 normalized var, %d iterations’,K),mask,[]); 220

subplot(2,2,1);
plot img(img,’original’,mask);

subplot(2,2,3);
hist(log10(hp),K/5);
title(’log10(hyper parameter)’);
xlabel(sprintf(’mode %g’,mode(hp)));

print(’results.pdf’); 230

print(’results.jpg’);

A.2 makeproj

makeproj() creates a projection matrix for a particular angle. It is used
in creating the sensitivity matrix for the forward model.

% Backprojection
% function proj = makeproj(a, x, y)
%
% The following function makeproj calculates an interpolating linear
% projection matrix for an angle a
%
% from http://www.sce.carleton.ca/faculty/adler/elg7173/notes/elg7173-backprojection.html

function proj = makeproj(a, x, y)
if ˜all(diff([size(x),size(y)])==0); 10

error(’x and y must be square’);
end

rmax= max([abs(x(:));abs(y(:))]);
spc = max(abs([mean(mean(diff(x’))), mean(mean(diff(y)))]));

plen= size(x,1);

%create x indices of projection ray
xx=x*sin(a) + y*cos(a);
xidx= (xx + rmax) / spc + 1; 20

xi l= floor(xidx); xi h = xi l+1;
xi il= (xi h−xidx); xi ih= (xidx−xi l);

%create y indices of projection ray
yy=x*cos(a) − y*sin(a);
yidx= (yy + rmax) / spc + 1;
yi l= floor(yidx); yi h = yi l+1;
yi il= (yi h−yidx); yi ih= (yidx−yi l);

% keep elements within bounds 30

kp = (xx.^2 + yy.^2) < (rmax − spc);
pnum = ones(plen,1) * (1:plen); pnum = pnum(kp);

% create sparse interpolation matrix

22

A.3 circular pixels A APPENDIX: CODE

posn = [yi l(kp), yi h(kp), yi l(kp), yi h(kp)] + . . .
plen*([xi l(kp), xi l(kp), xi h(kp), xi h(kp)]−1);

aprx = [xi il(kp).*yi il(kp), xi il(kp).*yi ih(kp), . . .
xi ih(kp).*yi il(kp), xi ih(kp).*yi ih(kp)];

proj = sparse([pnum,pnum,pnum,pnum], posn, aprx,plen,plen^2);
40

A.3 circular pixels

Example code to find the area of a circle divided by a ray s circle()

#! /usr/bin/octave −q

function a = f(s,r=1)
% s = the distance of the chord from the centre of the circle
% r = the radius of the circle

% theta = angle between the two lines that touch the edge of the circle
% where the chord line touches the circle
theta = 2.*acos(s./r);

10

% area of the portion of the circle from 0 to theta radians
ac = (theta/2)*(r.^2);

% area of the two triangles that are formed from the centre of the circle
% to the chrod line, where a right angle is formed by the intersection
% of the chord and s
at = 2*s.*(sqrt(r.^2−s.^2))/2;

% area beyond the chord
a = (ac − at); 20

end

f(linspace(−1,1,10))
s=linspace(−1,1,100);

plot(s,f(s)/pi);
xlabel(’s/r’);
ylabel(’A’);

print(’circle.pdf’);

23

