Markov Chain Monte Carlo

Overview

- Definitions
 - Markov Chain
 - Monte Carlo
- Kernels and Sampling
 - Gibbs / Metropolis-Hastings
- What I Did
 - Some example images

Markov Chain

 "a mathematical model for stochastic systems whose states, ... are governed by a transition probability. The current state in a Markov chain only depends on the most recent previous states." [1]

Monte Carlo

- The "random" part of the simulation:
 - Drawing from a given distribution with replacement.

MCMC

- A general technique for:
 - sampling from a posterior distribution,
 - integration in high dimensional space,
 - simulated annealing, and
 - learning. [1]

Differences

- Classical regularization gives a single answer
- MCMC explores a distribution
 - Both employ the same "regularization" (Tikhonov with Discrete Smoothing Norm, etc)

MCMC Kernel

- Metropolis Hastings
 - Propose a new distribution $x'=q(x',x^t)$
 - Accept dist. with probability $a = \frac{P(x')}{P(x^t)}$
 - Repeat $x^{t+1}=x'$ OR $x^{t+1}=x^t$
- Gibbs Sampling (a special case of *)
 - $x_1 \sim P(x_1|x_2)$
 - $x_2 \sim P(x_2|x_1)$
 - Repeat
 - NOTE: always accepted = no wasted work!

Burnin

- Samplers will converge to the target distribution
 - NEAT!
 - ... but how long?
- Some number of iterations are required to achieve convergence before the samples will accurately represent the distribution

(unless the first guess is good)

Fancier Kernels

- Some redundant work is done by the samplers since they are performing a "random walk" and may be sampling the same region repeatedly.
 - by adding concept of "momentum"

- No free lunch...
 - There's no one recipe for all problems

What Did I Do?

- CT Back Projection
- Gibbs Sampler
 - Modelled randomized normally distributed errors
 - Additive measurement noise
 - Additive prior (x0 ~ 0)
 - Modelling error (projection angle)
 - = multiplicative modelling noise
 - Hyper-parameter (Rayleigh dist.)

Tikhonov Regularization

$$min\{ ||Ax-b||_2^2 + \lambda^2 ||L(x-x_0)||_2^2 \}$$

Solved via Least Squares

$$x = \begin{bmatrix} Ax \\ \lambda L \end{bmatrix} \setminus \begin{bmatrix} b \\ \lambda L x_0 \end{bmatrix}$$

Gibbs

Calculate and Repeat for K samples:

$$\lambda \sim P(\lambda|x) = \lambda^{(n+2)} \exp\left(\frac{-1}{2} \frac{\lambda^2}{\sigma_p^2} ||L(x - x_0)|| - \frac{1}{2} \left(\frac{\lambda^2}{\lambda_0^2}\right)^2\right)$$

A = proj(angles + noise)

$$x = \begin{bmatrix} \sigma_b^{-1} A x \\ \lambda \sigma_p^{-1} L \end{bmatrix} \setminus \begin{bmatrix} \sigma_b^{-1} b + \eta \\ \lambda \sigma_p^{-1} L x_0 + \zeta \end{bmatrix}$$

 Converges towards expected hyper-parameter vs. L-curve

500 samples, 10 angles

1h

$$\lambda_0 = 10$$

500 samples, 60 angles

1.5h

$$\lambda_0 = 10$$

Discussion

[http://www.clipartguide.com/_pages/0808-0712-3117-5830.html]

Alistair Boyle, Apr 2009, SYS5906: Directed Studies -- Inverse Problems

References

- MCMC Tutorial, http://www.civs.ucla.edu/MCMC/MCM C_tutorial.htm, visited Apr 5, 2009
- Wikipedia: Markov Chain Monte Carlo,http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo, visited Apr 5, 2009
- J Kaipio, E Somersalo, Statistical and Computational Inverse Problems, Springer, 2005