

Alistair Boyle 2010

Overview

- Course Outline

- Background
- Scheduling

a Plan

- Building blocks
- Matrix types (dense, banded, triangular, sparse*)
- Generalized problems, solution techniques
- Sparse matrices: storage, operations, ordering
- Distributed matrix computations
- Shared memory vs. Heterogeneous:
- (optimal) partitioning, ordering
- Sparse \& distributed

Course Outline

1. Identify the literature of distributed sparse matrices (see reading list) - Sept 15
2. Identify toolkits for distributed sparse matrices (see reading list) - Sept 15
3. Understand how distributed sparse matrix solvers work and write a report about distributed sparse matrices - Oct 20
4. Build a test framework for distributed sparse matrices and test for various solvers - Oct 30
5. Build an interface to Octave and/or Matlab to interface to distributed sparse solvers - Nov 30

Project

- Midterm Report: Review of Distributed Sparse Solver Toolkits
- Project Report \& Presentation: Testing Framework and Interface to Octave (or MatLab)

Basic Linear Algebra Subprograms (BLAS)

- Basic matrix operations
- L1 - vector-vector operations
- L2-matrix-vector operations
- L3- matrix-matrix operations
- Optimizations for
- Dense, banded, triangular
- NOT sparse

Linear Algebra

PACKage (LAPACK)

- Builds upon BLAS
- Solvers:
- Linear Least Squares
- Generalized Least Squares (find the min)
- Eigenproblems (find the resonant frequencies).
- Factorization, Decomposition
- OR, LQ, QR* (min norm), Complete Orthogonal, RQ
- SVD, Schur compliments

Sparse Matrices

Sparse Matrices

- Storage
- $($ row, column $)=$ value
- compressed column/row format
- Linear algebra solvers after performing reordering to optimize sparsity
- AMD, METIS, CHOLMOD, UMFPACK

http://www.flickr.com/photos/mattwright/1787856/

Schedules

- Alistair: Class Tue/Thurs 11:30-1pm
- Dr. Adler?
- Dr. Green?
http://www.flickr.com/photos/tonivc/2283676770/

Questions?

