

Overview

Motivation

- Linear Equations
- Exact solutions
- Approximations
- Eigenvalues/vectors
- Vibration
- Harmonics

Sparse Storage

Triplets

$(1,1)=10$
$(10,100)=2.3$
$(7,5103)=6.44$
$(1020,10)=6$
\vdots
$(1,10)=5$
$(\mathrm{~N}, \mathrm{M})=\mathrm{V}$

List-of-Lists

CSR

Sparse Storage Compressed Sparse Row format (

Sparse Storage File Formats

- Matrix Market
- Triplets format, ASCII
- Harwell-Boeing
- Compressed Sparse Column (CSC) format storage
- Assembled, elemental, real, complex, pattern matrices
- Support for multiple right-hand sides, guesses, solutions
- Rutherford-Boeing
- An updated version of the Harwell-Boeing format
- Supplementary matrix information
- Orderings, estimates, partitions, Laplacian values, geometry, etc.

Solution Decompositions

Involves
converting
matrices to
triangular or diagonal form through matrix transformations

Solution LU Decomposition

- If A is square:

$$
\begin{aligned}
& A x=b \Rightarrow x ? \\
& A=L U \\
& L y=b \Rightarrow y \\
& U x=y \Rightarrow x
\end{aligned} \begin{aligned}
& \text { 1. decomposition } \\
& \text { (Crout or Doolitle algorithms) }
\end{aligned}
$$

- L is unit lower triangular, U is upper triangular

Solution Cholesky Decomposition

- If A is square, hermitian, positive definite:

$$
\begin{aligned}
& A x=b \Rightarrow x ? \\
& A=L L^{H} \\
& L y=b \Rightarrow y<\begin{array}{l}
\text { 1. decomposition } \\
\text { (Cholesks-CroutBanachiewwicz algorithms) }
\end{array} \\
& L^{H} x=y \Rightarrow x _ \text {2. forward substitution }
\end{aligned}
$$

- Special case of LU decomposition where $U=L^{H}$

Solution QR Decomposition

- If A is square, nonsingular:

$$
\begin{aligned}
& \operatorname{argmin}\|A x-b\|_{2}^{2} \Rightarrow x ? \quad \text { (Least squares solution) } \\
& A=Q R \Rightarrow Q^{H} A=Q^{H} Q R=R \\
& \left\|Q^{H} A x-Q^{H} b\right\|_{2}^{2}=\left\|\begin{array}{l}
\text { 1. decomposition } \\
R x-c_{1} \\
-c_{2}
\end{array}\right\|_{2}^{2} \ldots c=Q^{H} b, R x=c_{1} \Rightarrow x
\end{aligned}
$$

- Q is orthogonal/unitary, R is upper triangular

$$
Q^{H} Q=I, Q^{-1}=Q^{H}
$$

Solution Other Decompositions

Eigenproblems: Schur factorization Singular Value Decompositions

Solution: QR factorization Givens Rotations

- Rotation of a point about a line

Solution: QR factorization Givens Rotations

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & b \\
-b & a
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
m \\
0
\end{array}\right]} \\
m=\sqrt{x^{2}+y^{2}} \\
a=x / r \\
b=y / r
\end{gathered}
$$

Example

$$
G_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & a & 0 & b & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -b & 0 & a & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Only four entries in the transformed matrix are modified for a single Givens rotation. Result is one entry in the transformed matrix becoming zero.

Solution: QR factorization Householder Reflections

- Reflection of points across a hyper-plane

Solution: QR factorization Householder Reflections

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & \ldots \\
a_{21} & a_{22} & \ldots \\
a_{31} & a_{32} & \ldots
\end{array}\right] \quad \quad A^{\prime}=Q A=\left[\begin{array}{ccc}
\alpha & a_{12}^{\prime} & \ldots \\
0 & a_{22} & \ldots \\
0 & a_{32} & \ldots
\end{array}\right] \\
& \begin{array}{l}
\alpha=\|x\|, \quad x=\left[a_{11} a_{21} a_{31}\right]^{T}
\end{array} \\
& e_{1}=[100 \ldots]^{T} \\
& \begin{array}{l}
u=x-\alpha e_{1} \\
v
\end{array} \\
& Q=u /\|u\| \\
&=I-2 v v^{T}
\end{aligned}
$$

Removes column at-a-time. Operates on submatrices as upper triangular matrix is produced.

Fill-in

- As a matrix is decomposed, it may fill-in: previously zero entries become non-zero, making more work for the later stages.

First 4 steps in Cholesky algorithm
Blue: initially non-zero,
Red: fill-in

Fill-in

- Reordering the first row \& column: massive improvement in required operations
- But... finding a "good" ordering is NP-hard

Reordered, First 4 steps in Cholesky algorithm Blue: initially non-zero, Red: fill-in (none)

Ordering Minimum Degree

(c) Factors and active submatrix

Orderings Nested Dissection

- Divide and Conquer
- Recursively split based on mutual independence

$A^{\prime}=\left[\begin{array}{ccc}a_{11} & 0 & a_{13}{ }^{\prime} \\ 0 & a_{33} & a_{23} \\ a_{31}{ }^{\prime} & a_{32}^{\prime} & a_{33}{ }^{\prime}\end{array}\right]$

Ordering

- MD, MMD, AMD • UMFPACK
- PORD

Hybrid

- METIS
- SCOTCH

Ordering parallel ordering

ParMETIS pt-SCOTCH

Hybrid

minimum degree
nested-dissection

Distribution Left-Looking

- Two operations
- Divide column by sqrt of its diagonal
- Add a multiple of one column to another
- Column-based
- iterates on columns to the left of the current column
- Save updates until a column is completed

Distribution Right-Looking

- Two operations
- Divide column by sqrt of its diagonal
- Add a multiple of one column to another
- "Submatrix"-based
- Iterates on columns to the right of the current column
- Requires (inexpensive) search on destination's storage to find new non-zero locations to insert

Distribution Multifrontal (Right-Looking)

$$
A^{\prime}=\left[\begin{array}{ccc}
a_{11} & 0 & a_{13}{ }^{\prime} \\
0 & a_{33} & a_{23} \\
a_{31}, & a_{32} & a_{33}{ }^{\prime}
\end{array}\right]
$$

Form a tree and solve independent portions. Updates to the matrix occur at the "front". Updates are kept on a stack - typically $+25 \%$ space.

Can have multiple independent fronts in parallel. Can take advantage of "super-nodes"

Solving in Serial

- CHOLMOD
- MA57
- MA41
- MA42
- MA67
- MA48
- Oblio
- SPARSE
- SPARSPAK \mathbf{v}^{+}■
- SPOOLES
- SuperLLT
- SuperLU
- UMFPACK

Legend
${ }^{+}$symmetric positive definite symmetric
\square non-symmetric

Solving in Parallel shared memory

- BCSLIB-EXT ${ }^{\text {- }}$
- Cholesky
- DMF
- MA41
- MA49
- PanelLLT
- PARASPAR
- PARADISO
- SPOOLES
- SuiteSparseQR
- SuperLU_MT ■
- TAUCS
- WSMP

Legend
${ }^{+}$symmetric positive definite symmetric
\square non-symmetric

Solving in Parallel distributed

- DMF
- DSCPACK
- MUMPS
- PaStiX
- PSPASES
- SPOOLES
- SuperLU_DIST
- S+
- WSMP

Legend

+ symmetric positive definite
symmetric
non-symmetric

Questions?

