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Abstract. Electrical Impedance Tomography (EIT) is a soft field tomography
modality based on the application of electric current to a body and measurement
of voltages through electrodes at the boundary. The interior conductivity is
reconstructed on a discrete representation of the domain using a FEM mesh and
a parametrization of that domain. The reconstruction requires a sequence of
numerically intensive calculations. There is strong interest in reducing the cost
of these calculations.

An improvement in the compute time for current problems would encourage
further exploration of computationally challenging problems such as the
incorporation of time series data, wide-spread adoption of three-dimensional
simulations, and correlation of other modalities such as CT and ultrasound.
Multicore processors offer an opportunity to reduce EIT computation times but
may require some restructuring of the underlying algorithms to maximize the use
of available resources.

This work profiles two EIT software packages (EIDORS and NDRM) to
experimentally determine where the computational costs arise in EIT as problems
scale. Sparse matrix solvers, a key component for the FEM forward problem and
sensitivity estimates in the inverse problem, are shown to take a considerable
portion of the total compute time in these packages. A sparse matrix solver
performance measurement tool, Meagre-Crowd, is developed to interface with a
variety of solvers and compare their performance over a range of two- and three-
dimensional problems of increasing node density. Results show that distributed
sparse matrix solvers that operate on multiple cores are advantageous up to a
limit that increases as the node density increases. We recommend a selection
procedure to find a solver and hardware arrangement matched to the problem
and provide guidance and tools to perform that selection.

Keywords: Electrical Impedance Tomography, Finite Element Method, Distributed
Computing, Sparse Linear Algebra Submitted to: Physiol. Meas.

1. Introduction

Electrical Impedance Tomography (EIT) is a soft field imaging modality that finds
applications in process monitoring, in medical diagnosis and in geotechnical surveying.
The technique is based on the application of electric currents to the object under
investigation through a number of electrodes located on the boundary. Voltages
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resulting at the electrodes from applied currents are measured and are used to
estimate the electrical conductivity distribution within the object. EIT conductivity
reconstruction can be formulated as a discretized forward problem using the Finite
Element Method (FEM). The corresponding inverse problem of estimating the
conductivity is determined by fitting a parametrized model to the data. The
inverse problem is ill-posed in the sense that small changes in the measurements can
correspond to drastically different conductivity distributions. This ill-posed-ness is
dealt with by applying regularization to find a numerically stable solution. Finding
an acceptable conductivity solution poses computational challenges as the FEM node
density increases and the corresponding number of numeric calculations grows. The
computational challenges can be addressed by applying restrictive assumptions on the
reconstructions or by applying greater computing resources.

Since the 1960s, many numeric codes have required nothing more than
recompilation to take advantage of updates to commodity processors. Improvements
in instructions-per-second performance and memory bandwidth have been due to
increases in processor frequency and architectural refinements. In more recent times
(c.2005), a major shift in the design of commodity computing resources has occurred
which has been driven by the growing power consumption of high frequency single-
core processors. The move toward multicore processors is a means to maintain Moore’s
Law while limiting the exponential growth of power consumption (Parkhurst et al.,
2006). (Where Moore’s Law over the last 40 years has come to refer to the doubling of
computing power every 18 months (Schaller, 1997).) The application of the familiar
EIT tools requires some degree of reconsideration with the growing availability of
commodity multicore processors.

In this paper, we are motivated by the desire to work with larger EIT problems.
An example is the move toward three-dimensional reconstructions, rather than two-
dimensional reconstructions common at this time. Three-dimensional EIT is desirable
because electric current flows throughout the domain unlike similar tomographic
modalities such as x-ray Computed Tomography (CT) where the x-rays are relatively
confined to a two-dimensional plane. Meshing the three-dimensional domain results
in a significantly larger number of FEM mesh nodes compared to the two-dimensional
domain when the final conductivity image is to retain the same resolution. Additional
computational demands also result from working with complex valued data, time series
data, and correlating other modalities (CT, ultrasound) with EIT.

To tackle these larger EIT problems we would like to make use of distributed
computational techniques. The conversion of once serialized operations to a parallel
multiprocessing environment can be a complicated task that has an upper bound on
possible efficiency gains set by Amdahl’s Law (Amdahl, 1967).

Speed-upA =
1

f + 1−f
N

(1)

where f is the fraction of a program that cannot be made parallel and N is the number
of processors available. Amdahl’s arguments, though somewhat simplistic (Suna and
Gustafsona, 1991; Hill and Marty, 2008), are a fundamental reason why much of
the design effort for processor hardware has focused on single processor performance.
Amdahl’s Law suggests why disappointing performance can result after considerable
work to make portions of a code run in parallel. Gustafson’s Law has been suggested
as a more appropriate model that claims the parallel portion of problems will scale to
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the available computing resources giving (Gustafson, 1988)

Speed-upG = f +N(1− f) (2)

In EIT, while there are serialization points in the solution, there are no significant
portions of the problem that fundamentally require serial processing. The intricacy
of both the techniques and problems that have been tackled has grown as more
capable compute resources have become available. The broad availability of multicore
processors should, thus, motivate development of the tools to make use of these new
resources.

The communication cost between the computational units is a critical design
consideration for these parallel algorithms that is not considered by Amdahl’s Law.
In multicore processors, a typical architecture shares a common memory and coherent
caching infrastructure between processing cores. This is in contrast to a distributed
memory architecture where each unit has independent memory and shared data must
be communicated between the units. Most commodity multicore processors today
are based on a Symmetric Multi-Processing (SMP) architecture using shared memory
and identical cores which limits the communication cost and complexity of an initial
transition to parallel code.

In this paper, we address the question of 1) where computational costs exist in
the numerical solution of EIT problems, and 2) specifically look at the behaviour
of a variety of sparse matrix solvers when applied to EIT problems. We examine
the methods used for solving the EIT problem using a FEM and show that the
numeric aspects of more finely meshed problems drive a requirement for distributed
computational methods. We investigate specific remedies in the form of distributed
sparse solvers to understand their usefulness and limitations in the context of EIT.

2. Overview

This work is divided into two portions. The first constructs a view of the
computational costs by building a profile of the performance of the EIT problem
solving toolkit. The second explores the specific choices available for improving FEM
simulation speed and introduces software designed to compare these codes.

2.1. Profiling

Two EIT codes were available for performance profiling: EIDORS and the New
Dartmouth Reconstructor Matlab (NDRM). EIDORS is principally written and
executed within the Matlab environment (Adler and Lionheart, 2006). It implements
a FEM solution to the EIT problem with numerous choices for solution approaches.
EIDORS can use a number of mesh generators including distmesh and Netgen.
NDRM is principally written in Matlab as well (Borsic et al., 2008). It implements
a FEM solution to the EIT problem using a Gauss-Newton iterative solver with C-
language .mex files used for a few computationally intensive routines.

In both of these codes, the general procedure for solving the problem is to 1)
obtain measurements according to a schedule of drive and measurement patterns, 2)
generate meshes, 3) estimate sensitivities to build a Jacobian, and 4) use the Jacobian
in combination with some regularization scheme to solve the inverse problem according
to some minimization criteria. Iterative solutions return to step 3) to estimate a new
Jacobian using updated conductivities. Methods that refine the mesh depending on
the solution would return to step 2) to generate a mesh update. (Figure 1)
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Figure 1: A generic EIT system; The object under investigation has electrodes
attached. Measurements are obtained from an EIT system through these electrodes.
On the processor 1) meshes are generated, 2) the sensitivity matrix is estimated, and
3) a regularized inverse solution is determined. This result is visualized (in this case)
as a 2D slice.

Measurements are obtained from an EIT system and frequently connected to
a general purpose computer to perform the heavier numeric computations. The
time cost of obtaining these measurements is directly related to the stimulation
and measurement protocol and communication throughput of the EIT equipment.
For “real” measurements, this time can be considered a fixed constant that is
instrumentation dependent and not explored further in this work. When performing
simulations, rather than using a physical system to obtain measurements, the
measurements are constructed by using a forward simulation of the EIT problem.
This can be achieved with a FEM using the desired conductivity distribution. The
stimulation and measurement protocol are then applied to the FEM to determine the
measurements.

Mesh generation for arbitrary domains is a challenging computational problem
but has received considerable attention due to its applicability to most FEM related
problem spaces. In general, algorithms exist for meshing two- and three-dimensional
domains in O(n log n) time with O(n) space for an n element mesh. In two dimensions,
these algorithms are the Delauney triangulation via plane sweep and divide-and-
conquer (Fortune, 1987; Guibas and Stolfi, 1985). For three-dimensional domains,
octree, advancing front, and Delauney techniques are available (Shephard and Georges,
1991; Löhner and Parikh, 1988; Watson, 1981). Additional speedups are possible in
multiprocessing environments through domain decomposition. The qualities of the
mesh can have a direct effect on the quality of the FEM calculations since the FEM
provides guarantees only as to the globally correct approximation which leaves room
for local errors (Strang and Fix, 1987). Choosing a regular structure such as a two-
dimensional circle or a three-dimensional box make the meshing relatively cheap to
generate, but this is not a practical option for most cases because, in EIT, it has
been shown that a correct boundary shape when comparing the forward and inverse
problems can be critical to getting reasonable results (Grychtol et al., 2011). A uniform
mesh is also not appropriate because a higher localized mesh density is desirable in
regions, such as near electrodes, where stronger electric fields exist. If the shape is
treated as constant, the mesh generation cost can be treated as a one-time expense.
In practical applications, this can become infeasible when the boundary is matched
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to specific patients through, for example, using a segmented CT or MRI to get an
approximately correct patient-specific boundary (Tizzard et al., 2005). Other scenarios
where mesh generation should be counted in the cost of an EIT simulation are when
adaptive mesh refinement is required or in algorithmic development where the mesh
is frequently adjusted as the problem is built up.

The computation of the sensitivity matrix (the Jacobian) requires numerous
calculations of the forward problem. The most straightforward and intuitive approach
is the perturbation method where each element of conductivity in the mesh to be
used for the inverse problem’s solution is perturbed in turn and the effect upon the
measurements is recorded. The matrix of these perturbation experiments forms the
Jacobian matrix. More efficient algorithms to estimate the Jacobian exist such as the
self-adjoint method (Breckon, 1990; Polydorides and Lionheart, 2002). Another such
trick is to remember that the Jacobian only considers the effect at the electrodes,
so a significant reduction in computation time can be achieved by applying a QR
decomposition to the set of all unit stimulations forming the right-hand side. Applying
this Q and particularly the new R, results in a system that only solves for the necessary
node voltages on the boundary

AX = B = QR (3)

X = (A−1Q)R (4)

where if the columns of Q that will eventually be zeroed by the lower part of R are
dropped, the required computations can be significantly reduced.

The EIT forward problem forms a sparse matrix that can be solved through either
direct or iterative methods. A direct solution is possible when solving a linearization
of the EIT problem. In the direct solution, the factorization formed by analyzing
and manipulating the FEM matrix can be reused for many different right-hand sides.
Small perturbations require recalculation of a portion of the factorization. Iterative
methods exchange some numerical accuracy for speed. When sparse matrix problems
become large, iterative methods are often the only option. Perturbations used in an
iterative solution can use a prior solution to converge quickly on the new solution but
cannot calculate multiple right-hand sides efficiently. In either case, it is possible to
perform these calculations using multiple processors by distributing the work.

Once determined, the Jacobian is used in combination with some regularization
scheme. The Jacobian itself is a dense matrix, and therefore, the result of the
application of a regularization scheme will result in a new dense matrix which in
turn can be solved given a set of measurements. There are two regularization
implementations available: the Tikhonov form and the Wiener filter form.

∆σ = (JTWJ + λ2R)−1JTW∆v Tikhonov (5)

∆σ = R−1JT(JR−1JT + λ2W−1)−1∆v Wiener filter (6)

where J is the Jacobian, R is some regularization matrix, and W is a measurement

noise covariance term for measurement update ∆v(k) = vmeas−v
(k)
est and conductivity

update ∆σ(k). The Tikhonov form scales with the size of the parametrized model (the
coarse model) while the Wiener filter form scales with the number of measurements.
The choice of implementation can have a significant impact on the computational cost
of these dense calculations. The Wiener filter form is used here. The dense matrix
calculations can be accelerated with multiprocessing or through the use of repurposed
graphics processor offload engines (Purcell et al., 2002).
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To compare these three later computational components of EIT (meshing,
sensitivity and regularized solution calculations), simulations were run using
increasingly more detailed meshes with the two EIT codes for both two- and three-
dimensional problems. In two dimensions, triangular elements were used so that a n
node mesh resulted in T elements

T = nb + 2ni + 2h− 2 2D triangular (7)

with nb boundary nodes, ni internal nodes and h internal holes contained in the
mesh. In three dimensions, there is no direct relation between nodes and elements.
Tetrahedral elements were used so that a n node mesh resulted in T elements

T =
1

3
eb + ei − ni +H − h− 1 3D tetrahedral (8)

with eb boundary edges, ei internal edges and H through holes (Ewing et al., 1970).
In general for meshes without holes and a large number of elements, these can be
approximated as T ' 2n for two dimensions and T ' 6n for three dimensions.
Therefore, three-dimensional problems tend to have many more non-zeros in their
FEM system matrices and require more computational “horsepower” as a result.

For each run, two meshes are generated: a fine mesh for forward calculations and
a coarser mesh for inverse calculations. The fine mesh is used to achieve numerical
accuracies that correspond with instrumentation noise levels. The coarser mesh is
used for the inverse portion of the problem because, as the mesh elements become
smaller, their effect on the measurements is reduced. This results in an increased
condition number for the Jacobian matrices and requires greater regularization which
cancels much of the potential resolution benefit of the smaller elements. A geometric
mapping between the two takes advantage of the benefits of both.

2.2. Sparse Solvers

Meshing and the dense matrix calculations were not explored in further detail for
this work as we chose to focus on the problem of improving the sensitivity and
forward problem calculation times. The forward solution is required in simulation
of stimulation and measurement patterns, as well as the sensitivity estimation for
the inverse problem. These require numerous sparse matrix calculations on the FEM
system.

Sparse solvers take advantage of the fact that a matrix such as the FEM
matrix largely contain zeros. Treating these matrices as dense incurs a significant
computational cost as the node density increases. The dense matrix calculation rate
becomes limited by memory bandwidth in transferring data that is largely known
to be zero or very nearly zero. An alternate approach, where only the non-zero
matrix elements are stored, is appropriate. Due to the requirements for accurate, and
therefore, irregular boundaries, the FEM matrices used in EIT tend to take on a sparse
but not precisely uniform structure. This structure requires a level of indirection to
store efficiently. A first step is storage as coordinate pair and value (a format commonly
called COO), but a further optimization orders the data so that one coordinate of the
coordinate pair is implicit in the storage format and thus, “compressed.” This storage
scheme is called the Compressed Sparse Row (CSR) or Compressed Sparse Column
(CSC) format depending on which coordinate has been compressed. If Matlab
integration is a goal, careful consideration of sparse solver storage formats should
be undertaken. The conversion between formats was not included in the performance
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Figure 2: Profiling EIDORS and NDRM for 3D; Total run time as node density
increased and shows percentage of run time for sensitivity estimation (Jacobian), and
regularizing the inverse and solving. Meshing time is shown as a multiple of the two
(scaled down by a factor of twenty). For each node density, EIDORS is shown on
the left and NDRM on the right. Total run time is shown against the right-hand side
logarithmic scale while percentage run time is shown against the left-hand side linear
scale. The percentage of run time devoted to sensitivity estimation as well as total
run time increased with node density.

results presented in this work but could be a significant performance factor for a
solver integrated with Matlab via a .mex interface. Further storage efficiencies can
be achieved by recognizing symmetric and Hermitian conditions on the matrix to
reduce storage requirements by half. In general, a symmetric matrix can be solved
directly with a Cholesky decomposition while an unsymmetric matrix can be solved
with an LU decomposition. A QR decomposition is not necessary because the matrices
are square. For an n-by-n sparse matrix, the LU decomposition generally requires
approximately twice as much computational time as the Cholesky decomposition due
to the larger number of non-zero entries in the matrix. For EIT, a strictly real valued
conductivity problem is symmetric, but complex valued problems are not Hermitian
(but are symmetric) and cannot typically take advantage of sparse symmetric solvers
(Bunch and Kaufman, 1977). The complex valued problem requires roughly twice the
storage and four times the number of multiplications when compared to a real valued
problem using the same decomposition due strictly to the handling of the complex
numbers.

For direct solvers, if the matrices were dense, the next step would be to factorize
the matrix and then solve with forward and backward substitution to arrive at a
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Figure 3: Profiling EIDORS and NDRM for 2D; Total run time as node density
increased and shows percentage of run time for sensitivity estimation (Jacobian), and
regularizing the inverse and solving. Meshing time is shown as a multiple of the two
(scaled down by a factor of two hundred). For each node density, EIDORS is shown
on the left and NDRM on the right. Total run time is shown against the right-hand
side logarithmic scale while percentage run time is shown against the left-hand side
linear scale. The percentage of run time devoted to sensitivity estimation as well as
total run time increased with node density.

solution. The factorization requires the majority of the computational effort while
forward and backward substitution is relatively quick. For sparse matrices, the
factorization is somewhat complicated by the effect of fill-in on the factorization. (Fill-
in is where previously zero entries in the matrix become non-zero as the factorization
proceeds which leads to an increase in the number of computations and storage space
required.) This can be an expensive computational problem so that heuristics are
required to select a “good” factorization strategy without wasting too much time
considering alternatives and thus, cancelling the potential time benefit that might be
achieved by finding a better factorization.

Using multiple processors holds out the possibility of faster computations, but the
advantage of additional worker CPUs is counterbalanced by the need to communicate
between these units and the components of the process that require serialization. The
direct sparse matrix solution process is commonly split into four phases. An initial
symbolic factorization is found based on the location of non-zero entries in the matrix.
This factorization is then implemented using the numeric values in the matrix. The
right-hand sides are then used with forward and backward substitution to find specific



Addressing the Computational Cost of Large EIT Solutions 9

solutions. Finally, depending on numerical accuracy concerns, iterative refinement
can be used to correct for any numeric errors introduced in the prior steps. Each of
these stages can be completed in parallel, but in general, at each step some degree of
synchronization between the workers limits the maximum achievable parallelization
speedup.

The most computationally expensive components of the sparse calculations are in
the symbolic and numeric factorizations. Since a poor symbolic factorization leads to
an expensive numeric factorization, symbolic factorization has received considerable
attention in the literature (Liu, 1989; Duff et al., 1990; Davis et al., 2004).

Iterative sparse solvers require a set of matrix addition and multiplication
operations and generally, use a direct solution to a much smaller matrix as part of
the process. Examples of this are the Conjugate Gradient and Generalized Minimum
Residual (GMRES) methods. Iterative solutions are also required for non-linear EIT
problems. In this work, we chose to focus on linearized difference EIT and the direct
solvers that provide an efficient mechanism for obtaining a solution to these problems
because they also provide a core component for large scale iterative solvers.

To test the performance of sparse direct solvers, we developed a common testing
platform called Meagre-Crowd. (Meagre-Crowd is open-source software released
under the GNU GPL version 3 license and available at http://github.com/boyle/

meagre-crowd.) Meagre-Crowd addresses the challenge of integrating a wide range
of matrix solvers in a uniform framework and provides assistance with compiling and
linking these dependencies. This platform is a mechanism for measuring the parallel
sparse matrix solution performance of a number of integrated solvers. These solvers
include single core solvers (UMFPACK), out-of-core file-based solvers (TAUCS),
symmetric solvers (CHOLMOD), and multicore based solvers (WSMP, MUMPS,
Pardiso, SuperLU DIST). Meagre-Crowd ensures an apples-to-apples comparison by
using a common set of underlying numerical libraries for all solvers. Meagre-Crowd
provides conversion functionality between the various matrix storage formats, so that
each solver can use its native format and allows loading from common file formats
such as MatrixMarket. It also provides an autotools based configuration and build
system to facilitate ease-of-use and a test suite to confirm correct operation.

3. Procedure

Profiling of EIDORS and NDRM was carried out by timing the components of the
solution process. Coarse and fine meshes were generated with Netgen and the
geometric mapping between the two was calculated. This phase was counted as
“meshing.” NDRM uses offline mesh generation so common meshes between EIDORS
and NDRM were used. The meshes were used to build FEM models including
Complete Electrode Model (CEM) boundary conditions. Forward simulations were
run using unit stimulations according to the stimulation and measurement protocol,
and these were used to estimate the Jacobian via the self-adjoint method. This stage
was counted as the “Jacobian” time. The FEM system matrices A, node voltages x and
boundary conditions b were saved for later use in the sparse solver comparison. Finally,
the Jacobian was used in combination with Tikhonov regularization using Laplacian
smoothing to build the inverse problem and solved with a single-step Gauss-Newton
iteration. This final step was counted as the “regularized inverse.” The time required
for each of these steps was recorded, and the results were plotted in Figure 2 and
Figure 3.

http://github.com/boyle/meagre-crowd
http://github.com/boyle/meagre-crowd
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Figure 4: Performance Tests in Meagre-Crowd for 3D EIT; Solution time plotted
as a function of number of FEM nodes and number of processing cores. MUMPS
performs the best on these test problems and shows a significant processing advantage
when up to four processors are assigned to the task. Note that CHOLMOD times are
normalized by multiplying by two because it is a symmetric solver and required to do
approximately half the work.

Two meshes were used to solve the inverse problem. A fine mesh was required for
accuracy on the forward simulations. A coarse mesh was required to manage the ill-
conditioning of the inverse problem. The fine mesh was used to estimate a Jacobian
based on boundary voltage changes due to small perturbations in the most recent
estimate of conductivity. To solve the inverse problem, the Jacobian, a regularization
scheme and boundary voltage measurements were used to estimate the conductivity.
Small elements (for example from the fine mesh) have little affect on the boundary
elements and significantly contribute to ill-conditioning of the matrices.

The geometric mapping between coarse and fine meshes can be an expensive
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Figure 5: Performance Tests in Meagre-Crowd for 2D EIT; Solution time plotted as a
function of number of FEM nodes and number of processing cores. No advantage for
the multiprocessing options is observed on these test problems. Note that CHOLMOD
times are normalized by multiplying by two because it is a symmetric solver and
required to do approximately half the work.

operation depending on the algorithm choice. NDRM finds the elements of the fine
mesh most closely related to each coarse mesh element while EIDORS calculates
geometric overlap fraction from the coarse to fine mesh. The EIDORS procedure
is more accurate but more computationally intensive for large numbers of elements.
The NDRM algorithm is most appropriate when the coarse mesh has elements much
larger than the fine mesh so that the error introduced in the mapping is small. The
cost of doing these computation with either algorithm scales as the number of elements
grows.

EIDORS 3.5 was run on an 8-core Intel Xeon X5550 SMP system at 2.67GHz
with 64GB memory using Netgen 4.9.11 and Matlab 7.13.0.564 (R2011b containing
UMFPACK 5.4.0). NDRM was executed using a 4-core Intel Core i5-750 system at
2.67GHz with 12GB memory using the same version of Matlab. For the purposes
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of this comparison these processors were equivalent because they were using the
same processor microarchitecture, the same cache size and running at the same clock
frequency. The processes were restricted to a single processing core and were not
memory bound.

The profiling exercise was done over a range of fine-mesh densities ranging from
5510 to 873805 nodes (22994 to 4792380 elements) in three dimensions and 362 to
33882 nodes (632 to 67018 elements) in two dimensions. This gave comparable element
resolution on the electrode plane between two- and three-dimensional problems. The
maximum size of the meshes was limited by EIDORS’s memory consumption (64GB).
Three electrode rings of fifteen electrodes each were used for the three-dimensional
problems. A single ring of electrodes was used in the two-dimensional problems.
Element refinement in the regions near the electrodes was set to have node densities
five times that of the central region. The coarse mesh was designed to have one quarter
the node density of the fine mesh but was somewhat constrained by the problem
geometry and refinement near the electrodes. Circular and cylindrical geometries
were modelled.

The sparse matrix performance measurements using Meagre-Crowd were
performed on the same hardware as the EIDORS profiling: an 8-core system. For each
of the two- and three-dimensional FEM system matrices, the system was solved for
all corresponding right-hand sides on a range of one to eight simultaneous processors.
A common EIT FEM matrix was used at each mesh node density for all solvers. For
three-dimensional problems, 45 orthogonal right-hand sides resulted from the electrode
stimulation protocol and 15 in two dimensions. The expected solution was stored
from EIDORS and compared at the conclusion of each testbench run as a check of
solution validity. All problems were real-valued and consequently symmetric, but the
(full) unsymmetric sparse matrices were used in these tests. These measurements
address the sparse matrix solution phase but not the sparse multiplication required to
complete the calculation of the Jacobian in the self-adjoint method. Meagre-Crowd
0.4.6 (Boyle et al., 2011) was used to test the performance of the sparse matrix
solvers: UMFPACK 5.5.0 (Davis, 2004), MUMPS 4.9.2 (Amestoy et al., 2006), WSMP
11.01.19 (Gupta et al., 1997), Pardiso 4.1.1 (Schenk and Gärtner, 2004), TAUCS 2.2
(Toledo et al., 2003), SuperLU DIST 2.5 (Li and Demmel, 2003) and CHOLMOD
1.7.1 (Chen et al., 2008). (CHOLMOD is a symmetric, positive-definite solver used as
a comparison versus these unsymmetric solvers.) These solvers shared a common set
of dependencies: Netlib BLAS update Apr 19 2011, LAPACK 3.3.0, ScaLAPACK 2.0.
Choosing an implementation of MPI and BLAS optimized for the current platform
did have a significant effect on the run-time but did not affect inter-solver comparisons
within the Meagre-Crowd testbench. Where possible the sparse matrix ordering codes
were also common: AMD 2.2.1, CAMD 2.2.1, CCOLAMD 2.7.2, COLAMD 2.7.2,
ParMETIS 3.1.1, and Scotch 5.1.10b. The solver configurations were left at their
default (generally automated and heuristically optimized) settings rather than having
these controls adjusted to achieve optimal performance for specific matrices.

4. Results

Figure 2 shows profiling results for EIDORS on three-dimensional problems. A dashed
line with half circle markers shows the exponential increase in run time as a function of
mesh nodes. The percentage of run time is plotted as 100% of what would be a single
step iteration of a Gauss-Newton type solver. The meshing time (scaled) is plotted as
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an additional percentage of this inner iteration time. In EIDORS, as the mesh node
density increased the relative amount of time required for meshing also increased but
then fell for higher density meshes. This was a function of the coarse-to-fine mesh
mapping which dominated run time for mid-density meshes. The figure also shows
profiling performed using NDRM for the same three-dimensional problems. Meshing
took a constant amount of time relative to the rest of the process due in large part to
the simpler coarse-to-fine mapping algorithm employed there. Actual mesh generation
times between EIDORS and NDRM were identical as a result of having Netgen in
common. With increased mesh node density, NDRM consumed the majority of its
time in the sparse Jacobian calculations. Run time overall was less than EIDORS for
larger problems.

For two-dimensional problems, Figure 3 shows that meshing time dominated the
rest of the problem for equivalent element resolution on the central electrode plane of
the three-dimensional problem. Jacobian calculations represented a majority of the
remaining time, but these times were quite short.

The profiling results showed that the sparse calculations consumed a major
portion of the time for more finely meshed three-dimensional problems. The
performance results from the Meagre-Crowd testbench showed that, for a given
problem size, these sparse solvers are consistently spread over a range of 1.5 orders
of magnitude in time. UMFPACK, similar to the version used in Matlab, is in
the middle of this group. (Figure 4, Figure 5) For three-dimensional problems, up
to four cores provided speed improvements. Applying more cores was detrimental
to performance. For two-dimensional problems, up to five cores provided speed
improvements for the larger problems. For larger matrices, the run times were
much faster than for their three-dimensional equivalent problems. The smallest two-
dimensional problems experienced slow downs when solved with multiple cores.

Some locations in the sparse solver performance plots were left blank. This was for
a number of reasons including the following: some solvers only supported single-core
operation; some solvers failed to factorize the system matrix; some solvers exhibited
memory management problems; some shortcomings in the integration of solvers into
Meagre-Crowd; and other missing data points represented failed heuristics in the front
ends of these codes that tried to select an appropriate configuration automatically with
occasional spectacular failures.

Memory usage for most solvers remained below 1GB with the exception of
UMFPACK on the largest problem at 2.1GB which indicates that neither memory
capacity nor swapping were a factor in the sparse solvers’ performance.

5. Discussion

In this work, we explored the computational cost of solving EIT inverse problems. A
profile of the performance of components used in the solution of two- and three-
dimensional EIT was constructed, and it was shown that a large portion of the
time was spent in sparse matrix calculations as the mesh density grew for two-
and three-dimensional problems. The sparse matrix performance of a selection of
solvers was compared against mesh density, processing cores and two- versus three-
dimensional problems using a testbench (Meagre-Crowd) that allowed an apples-to-
apples comparison of sparse solvers. It was found that some reasonable benefit in
computation time can be gained for three-dimensional problems with the best of these
solvers for a restricted number of processing cores but that the benefits are challenging



REFERENCES 14

to realize due to the complexity of building and integrating some solvers (Scott and
Hu, 2007). Larger problems magnified the benefits and extended the number of cores
which could be profitably used.

Our general guidance regarding the use of parallel sparse matrix solvers with
respect to EIT is that their performance is closely related to the problem. They are
not necessarily “just better.” To obtain a satisfactory comparison an appropriate
procedure is to first determine a range of mesh densities of interest, both coarse and
fine, that satisfy requirements. Second, select a set of candidate solvers and ensure that
they will all be using the same dependencies. Third, iterate over the solvers, number
of processors and range of mesh node densities to find a solver which has satisfactory
performance over the expected range. In considering the merits of a solver, the quality
of the software, whether the source is available, and whether the software build and
integration are “easy” might be further criteria to narrow the field of candidates. In
order to assist in this process we have created a tutorial with an example profiling
problem as an electronic supplement and released with EIDORS.

The EIT toolkits examined in this work (EIDORS and NDRM) are somewhat
restricted in the domain they can explore by memory usage limitations. Work on
reducing the memory consumption of these codes in Matlab would be beneficial if
they are to continue to be efficient research platforms for large EIT problems.

This work does not use Matlab’s parallel processing feature set which relies on
a multi-threaded BLAS implementation rather than parallel processing sparse solvers.
Without moving to Matlab’s Parallel Computing Toolbox, the scalability of Matlab
based solutions is restricted to symmetric (homogeneous) shared memory systems.
The size of problems that can be handled in Matlab appears to match this general
restriction. Sparse solver development to date has been based on the assumption
that optimal resource usage cannot be achieved by low-level parallelization alone
(Duff et al., 2002). To build larger scaled EIT systems appears to require specific
and careful memory handling and close integration with the other tools: meshing,
sparse and dense matrix manipulations. The multicore sparse solvers measured in this
comparison largely use MPI for communication which allows extension to distributed
memory systems. This comes at the cost of some software complexity and setup
overhead.

This work has helped shed some light on the computational costs of EIT problems
and what bottlenecks might be expected in the future as we try to take more complete
advantage of available multicore processors.

The open-source Meagre-Crowd sparse matrix performance testbench software is
available at http://github.com/boyle/meagre-crowd
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