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Abstract: Distinguishability criteria incorporating stimulation and measurement patterns as well
as an initial conductivity distribution over a specific domain were used in combination with linear
programming. The outcomes were stimulation and measurement patterns that maximize the mini-
mum distinguishability to give a robust experimental design. Specific applications for biomedical
EIT were demonstrated. The framework is observed to be extensible to arbitrary domains, elec-
trode configurations and geometries.

1 Introduction

The quality of images produced in impedance imaging is directly affected by the signal-to-noise
ratio of the measurements and electrode connectivity. In some scenarios, image quality can be im-
proved by increasing the stimulation amplitude or reacquiring data. Stimulation amplitude is finite
due to equipment properties. Additional electrical safety concerns exist in biomedical applications
where high current densities can result in tissue heating and interference with the body’s electrical
systems. Reacquiring missing data may not be possible due to the cost of a study or the transient
nature of the events being observed. In these situations, we would like to utilize stimulation and
measurement patterns that provide a robust data set in terms of good distinguishability throughout
the imaged region despite the possibility of an a priori unknown set of poorly connected electrodes.

In this work, we develop an approach to determine an optimal stimulation and measurement
pattern for a particular arrangement of electrodes and subject. The distinguishability over a set
of regions of interest due to a variety of individual stimulation and measurement patterns is de-
termined. Based on the calculated distinguishabilities of these candidate stimulation and mea-
surement patterns, an optimal subset is selected through a linear programming formulation. The
resulting selection is constrained so that reconstructed images avoid worst-case artifacts in the
event of missing or poor quality data on particular channels. The results were evaluated on two-
dimensional simulations of the human thorax showing an acceptable quality of reconstruction
using the selected stimulation and measurement patterns.

2 Distinguishability

The quality of an EIT system is ultimately determined by its ability to consistently produce
impedance images that accurately distinguish between features of interest. Additional factors such
as ringing, position errors and reconstruction artifacts degrade the ability of the system to perform
this task [1]. Once distinguishability is quantified, systems can be compared knowing that it will
perform well if the system provides sufficient distinguishability.



We define distinguishability here as the ability to distinguish between a hypothesis H1 (con-
ductivity change) and the null hypothesis H0 (no conductivity change) within a particular Region
of Interest (ROI) according to some measure m [2]. The probability that the null hypothesis is
rejected is determined by the z-score

z =
m̂−m0

std(m̂)
(1)

where m̂ is the maximum likelihood estimate for m, the null hypothesis is m0 and std(m) is the
standard deviation of m. The measure m is the estimated impedance change ∆σ̂ for a set of noisy
n difference measurements ∆d such that

∆d = J∆σ̂ + n (2)

where J is the Jacobian for a linearization of the forward EIT problem at the null hypothesis H0.
The impedance change for the null hypothesis is zero m0 = ∆σ̂0 = 0. The maximum likelihood
estimate of the conductivity change arg min ||∆d −R∆σ|| + P (·) for the hypothesis m within
an ROI of area AR is

m = ΘR
T∆σ̂ = ΘR

TR∆d = AR∆σ̂R (3)

where ΘR selects the elements in the ROI weighted by area, RR = ΘR
TR is the linearized

reconstruction matrix for the measurements. The linearized maximum likelihood reconstruction
matrix RR is

RR = (JR
TΣn

−1JR)−1JR
TΣn

−1 (4)

where JR = JΘR/AR = ∆d/m and J is the Jacobian of the conductivity change [J]i,j =
∂Fi(σ)/∂σj |σ=σ0 linearized at the initial conductivity σ0. The measurement noise n has noise
covariance Σn.

To determine the z-score, we calculate the maximum likelihood expectation and standard de-
viation

m̂ = E[m] = AR∆σ̂R (5)

std2(m̂) = var(m̂) = E[||m− m̂||2] = E[||RRn||2] = RRΣnRR
T = (JR

TΣn
−1JR)−1 (6)

so that

z =
m̂−m0

std(m̂)
=

AR∆σ̂R

RR
TΣn

−1R
= AR∆σ̂R

√
JR

TΣn
−1JR (7)

The definition of Isaacson [4] and similar work is based on the norm of difference measurements
||∆d||. The formulation of (7), by contrast, takes into account the effects of the measurement
scheme, noise properties of the system and multiple stimulation and measurement patterns. Using
the definition of distinguishability as a cost function, an optimal stimulation and measurement
scheme can be defined given a specific conductivity distribution and geometry.

3 Optimal Stimulation and Measurement

Generally, the optimal stimulation and measurement has been defined in terms of the L1-, L2-, or
L-infinity norm of the measurement data. These interpretations do not account for the reconstruc-
tion scheme.



An alternative optimal stimulation and measurement criteria is to select stimulation and mea-
surement patterns that satisfy the primal maximin or dual minimax criteria

x̂ = max
x

min
y

yTAx (primal) (8)

ŷ = min
y

max
x

yTAx (dual) (9)

where A is a matrix of distinguishabilities z arranged such that each column represents a particular
stimulation and measurement pattern and each row is a single ROI. The primal problem is to find
the best stimulation and measurement strategy x that will maximize distinguishability z given the
ROIs y that provide minimum distinguishability. The dual of the problem can also be solved to
find the ROIs that minimize the maximum distinguishability.

The primal optimization problem can be solved through linear programming by splitting the
problem so that

min
y

yTAx = min
i

ei
TAx → v ≤ ei

TAx (10)

and then maximizing the minimum value v

max
x

min
y

yTAx → max v

such that ve−Ax ≤ 0; eTx = 1; x ≥ 0 (11)

or in matrix form [
−A e
eT 0

] [
x
v

]
≤ 0
= 1

(12)

with x ≥ 0 and the optimal distinguishability v is a free variable. e is the all ones column vector.
ei is the basis vector which is all zeros except for a single 1 at row i. The solution x̂ gives the ratio
of stimulation and measurement strategies that will result in optimal distinguishability.

The dual problem can be solved similarly

min
y

max
x

yTAx → minu

such that ue−ATy ≥ 0; eTy = 1; y ≥ 0 (13)

with y ≥ 0 and the optimal distinguishability u is a free variable. The optimal distinguishability
will be the same for both primal and dual problems (v and u respectively) if there is a saddle point
in the solution space.

4 Results

Finite element simulations were performed in EIDORS version 3.5 [3] in combination with im-
plementations of the previously described distinguishability (7) and linear programming (11), (13)
equations.

In these simulations, particular strategies were compared from adjacent to nearly opposite
stimulation electrodes. Opposite stimulations were excluded since they have half the number of
unique data. Figure 1a shows theH0 FEM model of the human thorax with the ROI shown as red
circles. Figure 1b shows the distinguishability z as a function of ROI. This plot clearly shows
that nearly opposite stimulation and measurement results in significantly better distinguishability,
and thus, the minimax solution always chooses 1) the central ROI as the worst ROI (y7 = 1.0) and
2) the nearly opposite stimulation and measurement pattern (x7 = 1.0) as the best strategy where
strategies were numbered by number of electrodes between stimulation electrodes.
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(a) FEM mesh used for simulations; ROI as
red circles with darkest circle as ROI#1; central
ROIs have lower distinguishability

(b) Distinguishability for various stimulation
and measurement strategies from adjacent (light
purple: universally lowest z) to nearly opposite
(light green: universally highest z)

5 Discussion

This work demonstrates the use of linear programming to select the optimal stimulation and mea-
surement patterns for a given geometry and conductivity distribution based on the distinguishabil-
ity of conductivity changes within specified ROIs.

This work can be extended to robust stimulation patterns by first selecting an optimal set of
stimulation patterns, then removing an electrode and repeating the process. The distinguishability
and linear programming algorithm was demonstrated on arbitrary domains with arbitrary initial
conductivity distributions. The granularity of the stimulation and measurement patterns, from
single tetra-polar electrode measurements to arbitrary stimulation and measurement strategies, is
independent of the algorithm. More interesting results will come from these sorts of stimulation
and measurements because the maximin solution will not consist of a single stimulation pattern.

In summary, this work provides a practical algorithm for selecting appropriate and robust
stimulation and measurement patterns on arbitrary domains.
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