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Abstract: The performance of an EIT system is determined
by its ability to detect contrasting changes in a Region of
Interest (ROI) (the sensitivity), while not being sensitive to
those outside the ROI (the specificity). We propose a frame-
work to measure system performance and show that this can
be implemented as a minimax function over a Fisher linear
discriminant on the system sensitivity.

1 Introduction
EIT uses patterns of current stimulation and voltage meas-
urement (stim & meas patterns) to create images, and it is
clear that the choice of stim & meas patterns is critical to the
quality of the reconstructed images. Optimal L1-, L2- and
L∞-norm schemes have been considered for circular, two-
dimensional domains [1, 2]. Constructing optimal patterns
that maximize the distinguishability of a conductivity con-
trast with a constrained total stimulation power (L2-norm)
results in trigonometric patterns which use many stimulus
electrodes simultaneously [3]. A restriction to pair-wise
stimulus and measurement electrodes, common to many
EIT hardware implementations, results in schemes such as
the adjacent-drive and opposite-drive stim & meas patterns.

Sensitivity to a conductivity contrast, the Jacobian J,
can be expressed as the change in a measurement δVm with
respect to a small conductivity change δσ , as with the ad-
joint method

Ji, j =
δVm

δσi, j
=

∫
Ω

σ∇u ·∇v (1)

for a voltage distribution between stimulus electrodes u
and the voltage distribution if measurement electrodes were
used as stimulus electrodes v.

In this work, we develop a generalization of the “dis-
tinguishability” approach and show how this can be inter-
preted as considering sensitivity and specificity across ROIs
to achieve an appropriate trade-off between the two criteria.

2 Conceptual Approach
Our conceptual approach is shown in fig. 1. Here, we seek
image contrast changes in a “true" ROI, T , while not being
confused by changes in nearby “false" ROIs, F1, F2, F3. If
the EIT system makes measurements, m1,m2, then, includ-
ing noise, the detected changes from each ROI are shown.
Using Linear Discriminant Analysis (LDA), an optimal de-
cision boundary can be defined, and a probability of
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Figure 1: A framework for stim & meas pattern selection; “true”
and “false” targets are measured by an EIT machine, an LDA
provides an optimal decision boundary separating the two distri-
butions

error, p(ε), of false detection is calculated. The quality of
the pattern is defined by the maximum error probability.
Stim & meas patterns can then be compared, where the best
pattern minimizes the maximum probability of error p(ε).

3 Example
As an example, a set of regions (red circles) in an inhomo-
geneous half-space with 4 electrodes (green circles) are
considered (fig. 2). An initial stimulus and measurement
pair can be selected based on minimizing the maximum dis-
tinguishability z [4], but further choices are needed to bal-
ance sensitivity and specificity.

−50 0 50
−50

−40

−30

−20

−10

0

x [m]

de
pt

h 
[m

]

 

 

co
nd

uc
tiv

ity
 [S

/m
]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

surface electrodes
e` 1 e` 2 e` 3 e` 4

ROI # 1 ROI # 5

ROI # 6 ROI # 10

σ−

σ− σ+

2 4 6 8 10

2

4

6

8

ROI

D
is

tin
gu

is
ha

bi
lit

y 
Z

−
sc

or
e

 

 

1.6

1−3:2−4  	(1.00)
1−4:2−3
1−2:3−4

STIM/MEAS (xopt)

Figure 2: A half-space model with inhomogeneous background
conductivity; 4 surface electrodes (green) and 10 regions of in-
terest (red circles); the most widely spaced combination of stim &
meas pattern gives the best distinguishability (blue, orange) over
adjacent (green).

4 Discussion
The selection of optimal strategies has previously been fo-
cused largely on sensitivity. We propose an approach that
can be used to select optimal stim & meas patterns that cap-
ture the trade-off between sensitivity and specificity.

In the limit, sensitivity is the Jacobian J at a point on the
domain. We observe that the concept of specificity is then
intimately related to the partial derivatives of the Jacobian

∂x,yJ = ∇(σ∇u ·∇v) (2)

= σ(∇2u ·∇v+∇u ·∇2v)+∇σ(∇u ·∇v) (3)

reflecting the variation in sensitivity between nearby points.
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