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Abstract. Electrical Impedance Tomography (EIT) or Electrical Resistivity

Tomography (ERT) apply current and measure voltages at the boundary of a domain

through electrodes. The movement or incorrect placement of electrodes may lead

to modelling errors that result in significant reconstructed image artifacts. These

errors may be accounted for by allowing for electrode position estimates in the model.

Movement may be reconstructed through a first-order approximation, the electrode

position Jacobian. A reconstruction that incorporates electrode position estimates and

conductivity can significantly reduce image artifacts. Conversely, if electrode position is

ignored it can be difficult to distinguish true conductivity changes from reconstruction

artifacts which may increase the risk of a flawed interpretation. In this work, we aim

to determine the fastest, most accurate approach for estimating the electrode position

Jacobian. Four methods of calculating the electrode position Jacobian were evaluated

on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update

methods are competitive in computational efficiency but achieve different solutions for

certain values of contact impedance and mesh density.
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In both geophysics and biomedical impedance imaging, electrode movement and

boundary modelling errors can be the cause of significant image reconstruction artifacts

(Adler et al 1996, Zhou and Dhalin 2003, Boyle and Adler 2011, Crabb et al 2014).

Reconstruction artifacts can sometimes be difficult to identify and can make a correct

interpretation of a reconstructed conductivity distribution challenging. Data misfit

can be informative in detecting such errors, though attributing data misfit to specific

artifacts is generally not explored in any particular depth. Therefore, mismatches

between the physical and model boundary, boundary errors, may increase the risk of an

incorrect interpretation.
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Movement of the model boundary may be estimated from electrode movement

by interpolating surface movement between the electrodes. Some artifacts may be

addressed by adapting the model to allow for electrode position estimates. In two

dimensions, movements that are conformal do not introduce artifacts (Boyle et al

2012a). In three dimensions and assuming full Robin-Neumann data at the boundary,

for a convex domain the conductivity, shape, and contact impedance are unique up to

a rigid transformation (a rotation or translation) because the other 4 dimensions of a

conformal map, the three specifying a Möbius inversion and one for scaling, disappear

from the null space (Kolehmainen et al 2007). Non-conformal shape changes may

be explained by a specific anisotropic conductivity, isotropic conductivity and shape

change, or anisotropic conductivity and shape change (Lionheart 1998). For an assumed

isotropic conductivity, exactly those electrode displacements that are not conformal

may be reconstructed by setting electrode positions as model parameters in the inverse

problem. To reconstruct electrode position in an L2-norm Gauss-Newton framework,

an electrode position Jacobian must be constructed to estimate the first derivatives of

the measurements with respect to the electrode position.

In this work, we aim to determine the fastest, most accurate approach for estimating

the electrode position Jacobian. The four Jacobian methods, detailed in the following

sections, are: the näıve perturbation method, a minimal mesh perturbation method, a

rank-one matrix update (Gómez-Laberge and Adler 2008), and the recently developed

Fréchet derivative (Dardé et al 2012). We make use of a simplified four electrode

homogeneous half-space model to investigate computational efficiency and deviations

from anticipated solutions. Throughout this work, the conductivity is assumed to

be isotropic. By evaluating these methods, we mean to explore the sensitivity of the

perturbation methods, understand and implement the Fréchet derivative, and ask the

Engineering question: Do these methods give the same answer for a simplified model?

1. Applications of the Electrode Position Jacobian

For impedance imaging, the electrode position Jacobian can be used to reconstruct

electrode position. This is practical when the interior conductivity distribution is known

and the forward model is otherwise accurate. In general, the interior conductivity

is not known and a joint reconstruction of electrode position and conductivity can

significantly reduce the occurrence of artifacts (Soleimani et al 2006, Gómez-Laberge

and Adler 2008, Jehl et al 2015).

One approach to achieving a joint reconstruction is an extension of the conductivity

reconstruction over an L2-norm using the well known Gauss-Newton iterative method

(Nocedal and Wright 1999, §10.2). Over the course of a number of iterations,

the conductivity and electrode position may be reconstructed based on the EIT

measurements. An update (δσ, δx) is calculated (1) based on the combined Jacobian

J, the inverse noise covariance of the measurements W, regularization R scaled by

hyperparameter λ, the measurement misfit b, and the prior misfit c. A line search may
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be used to determine α the amount of the update to apply (2).

(δσ, δx) = −(JTWJ + λ2RTR)−1(JTWb + λ2RTRc) (1)

(σn+1, xn+1) = (σn,xn) + α(δσ, δx) (2)

for b = F(σn,xn)−m

c =

[
σn − σ?
xn − x?

]

J =

[
Jσ
Jx

]

R =

[
βRσ 0

0 ηRx

]
The measurement misfit b is calculated for each iteration using a forward model F
from the conductivity σn and movement xn estimates at iteration n. Likewise, the prior

misfit is calculated as the difference between the current parameter estimates σn,xn
and the prior estimates σ?,x?. The combined Jacobian is simply the conductivity

Jσ and electrode position Jacobians Jx concatenated. The regularization matrix R

is a block diagonal matrix combining conductivity regularization Rσ and movement

regularization Rx. The relative strength of the regularization is controlled by the ratio

of the regularization hyperparameters β/η. The initial conductivity is generally taken

to be a homogeneous estimate of the conductivity or the prior.

Nearly the same formulation may be used for a difference reconstruction where

there is a baseline set of measurements and measurements at a later time. The change

in conductivity and electrode position may then be computed as a single-step in the

Gauss-Newton update (1) for a sufficiently linear change. A line search (2) is typically

not necessary (α = 1). The prior is generally taken to be the background conductivity

and initial electrode positions (c = 0) giving

(∆σ,∆x) = −(JTWJ + λ2RTR)−1(JTW(m1 −m0)) (3)

for J =

[
Jσ
Jx

]
; R =

[
βRσ 0

0 ηRx

]
where the Jacobian is calculated on a prior estimate of conductivity and electrode

position. In the difference solution (3), mutual errors in the sets of measurements m0,m1

will generally cancel making the reconstruction problem slightly less challenging since

the forward model does not need to match the real system with as much fidelity as the

absolute reconstruction (1).

Joint reconstructions, regularization, and balancing the two parameter types

are not explored further in this work. Joint electrode position and conductivity

reconstructions are an on-going topic of research in both the biomedical Electrical

Impedance Tomography (EIT) and geophysics Electrical Resistivity Tomography (ERT)

fields (Jehl et al 2015, Wilkinson et al 2016).
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VδU

δx
Electrode

Figure 1: Electrode movement; an electrode (light green ) with a measured potential

difference V relative to a reference electrode (dark green ) is moved δx resulting in a

change in the measured voltage V′ = V + δU

2. Electrode Position Jacobian

An “electrode position Jacobian” is a first-order estimate of the effect of an electrode

movement on the impedance imaging measurements. In impedance imaging, the

electrode position Jacobian has a prominent role in some techniques for addressing

the issue of boundary errors. An electrode position Jacobian matrix Jx, captures how

a small electrode movement δx affects each measurement δU (figure 1)

J i,jx =
∂Ui
∂xj

(4)

where matrix row i, column j is the i-th measurement’s change in voltage given a small

movement on electrode j. The electrode position Jacobian estimates the effect of an

electrode’s movement in the same way that a conductivity Jacobian

J i,jσ =
∂Ui
∂σj

(5)

reflects how a regional change in conductivity σj affects each measurement Ui.

For the Point Electrode Model (PEM), the Jacobian captures movement effects,

but real electrodes modelled using the Complete Electrode Model (CEM) have non-

infinitesimal geometry and an associated contact impedance which affects current

flow in the vicinity of the electrode (Somersalo et al 1992). In general, the size,

shape, rotation, and contact impedance are assumed to be constants in calculating

the Jacobian. Electrodes moved in such a way are treated as inflexible and non-

rotating electrodes. This has some clear limitations in the context of curved surfaces

where the electrode can only move a certain distance without some sort of rotation to

maintain contact with the boundary. In practice, the components of a movement vector

are typically applied as tangential and normal movements rather than translation in

absolute coordinates. Contact impedance and full movement vectors could, in principle,

be estimated as columns in the Jacobian. Contact impedance and the conductivity

distribution have been simultaneously reconstructed for impedance images (Vilhunen

et al 2002, Heikkinen et al 2002, Winkler and Rieder 2015). Sensitivity to normal

movements are usually such that their effects are difficult to estimate accurately unless

measurements are taken on driven electrodes (Crabb and Lionheart 2015, Crabb et al

2017).
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For a minimizing the 2-norm of a residual using Gauss-Newton updates, the

Jacobian J, regularization R, hyperparameter λ and data misfit r, determine the search

direction δx. A line search then determines a distance α along that search direction. If

the system is sufficiently linear, a line search is unnecessary and α = 1 can work well.

rn = Fb(σn,xn)−U (6)

δxn = (JTJ + λ2RTR)−1 JTrn (7)

xn+1 = xn + α δxn (8)

Errors of magnitude in the Jacobian may be circumvented by a reasonably accurate line

search. On the other hand, any systematic errors in the electrode position Jacobian’s

direction estimate may entirely confound an attempt to address the electrode position

issue. Therefore, the electrode position Jacobian plays a key role in estimating any

electrode placement error in the model or accounting for electrode movements.

3. Movement Artifacts

Surprisingly small amounts of electrode or surface movement can be a source

of significant conductivity reconstruction artifacts when electrodes are incorrectly

positioned. Electrode movements of as little as 5.7% of electrode spacing cause

significant artifacts for elliptical 16 electrode (lung EIT) configurations (Adler et al

1996). Electrode movements of 10% have been observed to give 20% resistivity

artifacts for a collinear electrode array (2D geophysics ERT) configurations (Zhou and

Dhalin 2003). To an experienced observer, an individual small electrode movement

can be identified as a conductivity image artifact surrounding the erroneously placed

electrode.

In figure 2, a two-dimensional half-space Finite Element Method (FEM) model

with background resistivity of 100 Ω·m, a conductive target (90 Ω·m), and a resistive

target (110 Ω·m) were simulated to generate measurements on a 32 electrode linear

array (5 m electrode spacing) with the Wenner stimulus pattern (Barker 1979, Loke

and Barker 1996). Conductivity images were reconstructed after adding noise (40 dB

SNR Additive Gaussian White Noise (AGWN)) and moving two electrodes (electrode

#2 and #12) in opposite directions by up to 50% (2.5 m) of electrode spacing (5

m). Artifacts initially appear near the moved electrodes for small movements and,

for larger movements, spread to contaminate the entire image by masking the true

targets (figure 2b–g). When movements are reversed the artifacts near the electrodes

are generally reversed: conductive artifacts become resistive and vise-versa (compare

figure 2g to figure 2h). Larger movements or movements of multiple electrodes, where

the effects interact, can lead to images that are very difficult to interpret. More extreme

electrode movements may result in a reconstruction that fails to converge such that

there is no useful image to interpret.

The electrode position issue is, in fact, more tractable than it first appears.

Impedance imaging methods are quite good at detecting small electrode movements.
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elec#32−δx, elec#2 δx, elec#12

110 Ω·m
90 Ω·m

(a) Forward model (b) No electrode movement

(c) 1% electrode movement (d) 5% electrode movement

(e) 10% electrode movement (f) 25% electrode movement

(g) 50% electrode movement (h) −50% electrode movement

(i) Resistivity [Ω ·m]

Figure 2: Electrode movement artifacts; simulated reconstructions based on forward

model (a), each with two electrodes (electrode #2 and #12, circled, of 32 electrodes

numbered left-to-right at 5 m intervals) having electrode displacements of (b) 0% (c)

1%, (d) 5%, (e) 10%, (f) 25% and (g) 50% of electrode spacing on a 2-dimensional half-

space reconstruction (40 dB SNR, λ = 0.01, Laplace regularization, Wenner stimulus

pattern). Note that when electrode movement is reversed (h) -50%, the conductivity

artifacts near the moved electrodes are, for the most part, reversed. Single or well

separated electrode location errors introduce characteristic “ringing” artifacts that can

overwhelm conductivity-based information.
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(b) Linear fit error

Figure 3: Change in measurement versus electrode movement; (a) showing selected

measurements using electrode #12 (the movement electrode) when moved as both a

stimulus and measurement electrode, measurement voltages are shown as a percentage

of the zero movement measurement over the range of ±50% of electrode spacing (11

movement samples for each of 4 measurements, no noise, forward modelling only, Wenner

32 electrode stimulus pattern), colours between (a) and (b) are consistent, measurements

used electrodes [s+ s−:m+ m−] as indicated in (b), changes in measured voltages are

nearly linear with electrode movement (b) as calculated by the 2-norm error on a linear

line fit of measurement against electrode movement (< 1% measurement misfit over

±50% movement)

The artifacts caused by these electrode movements can be hard to distinguish from each

other and from other noise induced artifacts in a reconstruction, but by examining the

data misfit, rather than the artifacts, correlations between electrodes can be uncovered.

Data misfit that is strongly correlated with particular electrode movements will be

identified in a joint Gauss-Newton reconstruction (1). Using the same forward model

(figure 2a), the change in all measurements was plotted against a single electrode’s

movement over the range of -50% to +50% of electrode spacing (figure 3). The

measurement changes were nearly linear for a single electrode’s movement: generally

within 1% of measurements. The Jacobian, therefore, was nearly linear for a relatively

broad range of electrode movement. We note that the assumption of orthogonality

in the Jacobian will be approximately correct for “small” electrode movements or an

individual large movement.

4. Perturbation Jacobian

Calculations to estimate the electrode position Jacobian by direct perturbation of

an FEM mesh requires multiple forward solutions: one per electrode and position

dimension. (In three dimensions, a 32 electrode array would require 96 additional

forward solutions per Gauss-Newton iteration.) The method is a direct implementation

of equation (4): the partial derivatives are replaced with a small perturbation δxj of

electrode j’s location

J i,jx '
δUi
δxj

=
F(δxj)−F(0)

δxj
(9)
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electrode

(a) näıve perturbation

electrode

(b) minimal perturbation

Figure 4: Illustration of movement Jacobian via perturbation; (a) all nodes of

the FEM mesh belonging to a particular electrode are uniformly shifted by a small

perturbation , (b) only nodes along the edge of the electrode are perturbed giving

a more stable Jacobian estimate and faster computations, grey elements are those

elements connected to the perturbed nodes which must be updated in the FEM system

matrix

where δUi is the difference between two forward model F solutions and the only change

between forward models is the location of electrode j. The method inherently captures

all relevant movement effects in the model because the model is completely rebuilt to

incorporate the updated electrode position.

Figure 4a illustrates a näıve perturbation implementation for movement of a single

CEM electrode’s nodes in an FEM mesh. Perturbations such as the one illustrated here

must select a small enough perturbation to approximate the partial derivative while

using a large enough perturbation to remain numerically stable. The perturbation

method is fundamentally a calculation of the difference ∆u between two inverted FEM

system matrices A−1 given the same stimulus B

∆u = ub − ua = TXb − TXa = T (A−1
b −A−1

a )B (10)

where the operator T selects the difference between electrodes from all FEM nodal

voltages X to form a vector of all measurements. Numerical stability issues due to a

perturbation are typically observed when the difference in floating point errors between

two system matrices overwhelm the change in measured voltage at the electrodes. The

electrode position Jacobian is a function of the system matrix which is dependent on the

conductivity distribution, boundary, electrode placement, electrode size and electrode

contact impedance. The selection of a stable perturbation magnitude is then dependent

on variables that are typically unknown or uncertain to a significant degree.

We observe that a difference solution will cancel common errors in two inverted

system matrices. Movement of all of an electrode’s nodes affects the shape of all elements

directly connected to the electrode. A piece-wise linear forward model of potential within

the domain usually requires smaller elements near the electrode boundary to accurately

approximate the electrical discontinuity at the edge of an electrode. Therefore, a small

perturbation to the electrode location will affect a large number of mesh elements exactly

where the mesh is most sensitive to numerical noise.
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hδxd

x
d+ h

2

d

Figure 5: Illustration of large electrode position perturbations; an electrode is relocated

by a distance x to a new site , (a) nodes in the vicinity of the new location d + h/2

replace the old electrode nodes, and (b) the new electrode boundary nodes are perturbed

δx to exactly match the correct electrode boundary , only nodes along the edge of the

electrode are perturbed, grey elements are those elements connected to the perturbed

nodes which must be updated in the FEM system matrix along with CEM connectivity

and contact impedance distribution

5. Improved Perturbations

To improve compute time for the perturbation method, we introduced an alternate

“minimal” perturbation strategy (figure 4b). Rather than moving all nodes associated

with an electrode, only nodes at the boundary of the electrode were shifted. The

two solutions, näıve and minimal perturbation, are analytically equivalent because the

boundary conditions are consistent. None the less, numerical differences exist due to

the order of operations: at which point the problem is converted from a continuous

domain to the discrete one. The choice of when and how to discretise implicitly selects

a subset of the possible solutions. The minimal perturbation method should suppress

instabilities in the näıve perturbation method because fewer elements of the difference

in system matrices are subject to non-cancelling floating point errors.

The minimal perturbation method may be extended to handle large electrode

movements (figure 5). Assuming sufficient element refinement over the surface, the

method may be applied by selecting nodes on the mesh for a new electrode location.

The new electrode’s boundary nodes are then perturbed to match the exact electrode

location and diameter. First, a new electrode location x is identified. The local node

spacing nearby is measured h and all nodes within the electrode diameter plus a margin

de` +h/2 are assigned to replace the former CEM nodes. The new electrode’s boundary

is identified and nodes on that boundary are perturbed radially with respect to the

electrode centre so that the electrode boundaries exactly match the prescribed shape

and location. For iterative solutions, perturbations start with a common mesh so that

mesh quality is not successively degraded by perturbations.

Finally, by identifying the elements affected by nodal perturbations and CEM

connectivity changes, the system matrix A may be updated by only recalculating

modified elements in S(e) and reusing unmodified elements. The system matrix may

then be reassembled at little relative cost. Typically, we observed a speed-up of between
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two and six times the näıve perturbation approach.

6. Rank-one Update Perturbation

One technique for reducing the quantity of calculations required for a mesh perturbation

is to develop a rank-one matrix update to the FEM system matrix. The rank-one matrix

update for electrode position (Gómez-Laberge and Adler 2008) has generally been used

for single-step Gauss-Newton solutions where the electrode movement is small; typically

less than 1% of electrode spacing.

The rank-one update is an application of the Sherman-Morrison formula (Sherman

and Morrison 1950)

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(11)

which computes the inverse sum of an invertible matrix A (our FEM system matrix)

and an outer product uvT: the movement perturbation. The particular node to perturb

is selected by setting u,v as zero column vectors and non-zero at the row ui and column

vj of the matrix entry (i, j) that is to be perturbed. The determinant of the perturbed

matrix A is given by the well known matrix determinant lemma (Ding 2007)

det(A + uvT) = (1 + vTA−1u) det(A) (12)

for a perturbation uvT.

The FEM matrices are calculated

A = CTSDC (13)

Jσn =
∂v

∂σn
= −TA−1CTS

∂D

∂σn
CX (14)

for a system matrix A decomposed into a connectivity matrix C which associates local

and global node numbering in the element mesh, the element shape functions S, and the

conductivity per element D. The conductivity Jacobian Jσ for element n is calculated as

a difference in potentials T , given potential distributions X. (Yorkey et al 1987, Adler

and Guardo 1996). We note that T is an operator which selects difference measurements

from all calculated forward solutions and returns them as a vector. For a single stimulus,

T can be constructed as a linear matrix followed by a vectorization, but this does not

generalize unless all stimulus patterns use the same sequence of measurements. When

the shape functions are first-order piecewise linear functions of potential with piece-wise

constant conductivity, they can be calculated in two dimensions (nD = 2) as

S(e) =
1

nD!

1

| det E|
ET
\1E\1 (15)

E2D =

 1 p1x p1y

1 p2x p2y

1 p3x p3y


−1

(16)p1

p2 p3
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where S is a block diagonal matrix with each element e defined by its node locations

S(e), E\1 is the matrix E with the first row removed, and | det E| gives the area of the

2D element. The variables in the matrix E are illustrated by an example of a triangular

element (blue) with nodes located at p1 = (p1x, p1y), p2 = (p2x, p2y), and p3 = (p3x, p3y).

Applied to electrode position in impedance imaging, the process of Gómez-Laberge

and Adler (2008) is to use a decomposition of the FEM system matrix A to determine the

impact of perturbing a node. The electrode position Jacobian requires the application

of the product of derivatives rule

Jx,n =
∂v

∂xn
= −TA−1CT ∂S

∂xn
DCX (17)

∂S

∂xn
=

1

nD!

(
∂| det E|−1

∂xn
ET
\1E\1 +

1

| det E|

(
∂ET
\1

∂xn
E\1 + ET

\1
∂E\1
∂xn

))
(18)

where xn refers to a global node numbered n and affects all element shape functions S(e)

connected to that node so that some number of local nodes p involved in the matrices

E are perturbed. The partial derivatives of the first-order interpolatory shape function

may then be approximated

∂x| det E|−1 =
vTEu

| det E|
(19)

∂xE\1 = −(EuvTE)\1 (20)

using the rank-one perturbations vectors u and v to select the row and column to

manipulate by a small perturbation (Gómez-Laberge and Adler 2008).

The rank-one update avoids the need to reassemble an entire FEM system matrix

and recalculate the matrix inverse in the forward solution for each electrode position.

The previously described “minimal perturbation” technique might be applied to reduce

the number of nodes moved in the rank-one update. In practice, the benefit of a

minimal perturbation is small because the rank-one update is already computationally

inexpensive and numerically stable for perturbations involving a small number of nodes.

7. Fréchet Derivative for Tangential Movement

The Fréchet derivative for tangential electrode movement (Dardé et al 2012) accounts

for contact impedance zc effects when using the CEM for calculating the electrode

position Jacobian in a manner similar to the adjoint method for calculating the

conductivity Jacobian.

The adjoint method for conductivity takes the dot product of the stimulus

and measurement vector fields to calculate the conductivity Jacobian (Wang et al

2001, Borsic et al 2012).

Jm,j =

∫
Ω

NjEm(stim) · Em(meas) (21)

The stimulus field Em(stim) is the current vector for each element Nj of the FEM mesh

when a current is applied across stimulus electrodes used for measurement m according
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Um

u
zc

h

(a) Measurement

Vm

v
zc

h

(b) Stimulus

Figure 6: Stimulus and measurement fields; under a particular electrode attached

to a flat surface with contact impedance zc, (a) the measurement field u, and (b) the

stimulus field v are simulated to estimate the effect of the electrode movement υ∂E with

respect to a possible measurement Vm, Um.

to a stimulus and measurement protocol. The measurement field Em(meas) is found by

swapping measurement and stimulus electrodes to create a new stimulus driven with

unit current and re-solving the forward problem for each measurement.

The adjoint method is nearly always a better choice when available; it is more

efficient to calculate and more numerically stable than perturbation methods. Avoiding

perturbations to the forward system matrix A supports the reuse of the computationally

expensive decomposition (QR, LU, SVD).

The Fréchet derivative for electrode position takes a similar form as (21); an integral

over the dot product of two fields constructed from the stimulus field Em(stim) and

the field due to measurement electrodes used as stimulus Em(meas). Examining the

region near each electrode we observe that each measurement m is calculated as the

difference between potentials at two electrodes. For the CEM, each electrode has

a measured voltage U and a varying potential u along the contact surface with the

domain (figure 6a). Between these two potentials, lies a distributed contact impedance

layer which allows current to flow along the electrode. In calculating the electrode

position Jacobian, we are interested in the change in the measured electrode voltage

δU assuming the reference electrode’s measured voltage is unaffected by the primary

electrode’s movement.

For a small electrode movement h, the outward tangential component υ∂E of the

movement Jacobian Jx (the component normal to the edge of the electrode along its

circumference) may be calculated according to the main result derived in (Dardé et al

2012), equation (11)

δUm = Jxh+O(h2) (22)

Jx h =
1

`zc

∫
∂E

(h · υ∂E)(U − u)(V − v)ds (23)

where the measured voltage V and varying potential along the contact surface v are

calculated when used as a stimulus electrode (figure 6b). The 2D electrode is of length

` and contact impedance zc, with contact impedance units of [Ω.m]. We note that our

statement of this equation differs from that presented in (Dardé et al 2012) by adding

the 1/` denominator term, where the units of contact impedance were not explicitly
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stated in the prior work. We find that this restatement gives consistent results for large

contact impedances between the various methods while, at the same time, conforming

to our definition of the contact impedance units used elsewhere in this work. Integrating

over the surface of the electrode ∂E gives the electrode position Jacobian.

The implementation of the Fréchet derivative for electrode position in two

dimensions is particularly straightforward. For two-dimensional models, point

evaluation at the edges of the electrode gives

Jx,e =
1

zc

(
(U − u1)(V − v1)− (U − u2)(V − v2)

)
(24)

where electrode potential when used as a measurement electrode U and stimulus

electrode V are combined with the potential at each edge of the electrode. The potential

under the electrode when used as a measurement electrode, at both left u1 and right

u2 edges of the electrode are combined with those as if used as a stimulus electrode, at

both left v1 and right v2 edges of the electrode. The potentials v1, v2, V were calculated

by reversing the stimulus and measurement electrodes in the stimulus and measurement

pattern and solving the forward problem again. In three dimensions, the Jacobian

calculation involves the line integral along the electrode edge. These forward solutions

would be available without additional calculations for a “complete” stimulus sequence

where all combinations of stimulus electrodes were already calculated.

We implement the Fréchet derivative for tangential movement in two dimensions

and compare it to the three perturbation methods: näıve perturbation, minimal

perturbation, and the matrix rank-one update.

8. Methods

A rectangular two-dimensional model with four CEM electrodes on its upper surface

was constructed in Electrical Impedance and Diffuse Optics Reconstruction Software

(EIDORS) using NetGen (figure 7). Many models were generated that conformed to

the same geometry but with variations in the electrode diameter, mesh density and

contact impedance. Mesh density, electrode diameter and contact impedance were

varied over orders of magnitude. Simulations were run by generating a model for each

parameter in the range: mesh density, contact impedance, and electrode diameter. A

single parameter was varied over its range while the other two parameters were held

fixed. On each model, the electrode position Jacobian was calculated for each electrode

using our implementation of the näıve perturbation, minimal perturbation, rank-one

update, and Fréchet derivative. The results were plotted to demonstrate the points of

agreement and illustrate numerical instabilities between methods.

The model’s conductivity was set to unity (1 Ω·m). The size of the model was

set large enough so that expanding the sides or bottom did not significantly affect

the measurements. An alternate approach would have been to use a mixed boundary

condition that approximates the homogeneous conductivity in the ±x and −z directions
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Figure 7: A two-dimensional four electrode half-space model; outer electrodes s+, s−
were used for stimulus and inner electrodes m+, m− were used for measurements (hmax
= 0.1 m, de` = 0.2 m, zc = 0.02 Ω·m, σ = 1 S/m), streamlines (red) in the inset figures

show current density near the electrodes. Image background colour shows the voltage

distribution (voltage scale to the right of the figure),

Figure 8: Close up of simulation model electrodes showing how node density at the

electrodes was increased in proportion to overall node density for de` = 0.2 m when

(left) hmax = 1.0 m, (right) hmax = 0.1 m, with nodes connected by black lines, CEM

electrode shown in green

to infinity. The expanded domain is substantially easier to implement and achieves the

same result.

The four electrodes were spaced equidistant at 1 m intervals centre-to-centre. The

electrode diameter de` was varied from 0.9 m (nearly touching) down to 2 mm. Contact

impedance zc was varied between 10−14 Ω·m to 10+14 Ω·m. Mesh density, as measured

by the maximum element height hmax, was varied between 0.10 m and 1 m. Node density

at the electrodes was scaled in proportion to the overall node density (figure 8).

The geometry and electrode parameters were selected so that the results should be

general to any equally spaced linear electrode array. For example, contact impedance

effects are a function of the ratio of background resistivity to contact impedance.

In figure 7 (zc = 0.1 Ω·m, hmax = 0.1 m, de` = 0.2 m), current flow density is

indicated by stream lines (red) and voltage potential by the background colour map
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(blue–white–yellow). Inset in figure 7, are a close up of the positive stimulus electrode

s+ (upper inset), and measurement electrode m+ (lower inset). The diversion of current

flow through the measurement electrode can be observed for low electrode contact

impedances in the lower inset.

9. Simulations

Plots illustrating variations in the Jacobian with respect to contact impedance

(figure 9a), mesh density (figure 9b) and electrode diameter (figure 9c) follow. Plots show

the näıve perturbation, minimal perturbation, matrix rank-one update, and Fréchet

derivative for the positive and negative measurement electrodes (m+,m−). The dashed

vertical line (red) indicates the configuration when a variable was fixed for other plots

in figure 9.

Similar plots for all electrodes were observed. We observed that the measurement

electrode m− plot’s Jacobian were flipped vertically (Jm+ ' −Jm−). The stimulus

electrodes showed the same trends but with a reduced magnitude (Jm+ ' 3Js− '
−3Js+). Looking to our model (figure 7), we can see that this is the expected

behaviour. Given a difference measurement between two electrodes (m+,m−), in

a fixed and smoothly varying field caused by stimulus electrodes (s+, s−), we can

consider movement of a single electrode. Moving a measurement electrode m+ in the +x

direction reduces the distance between the measurement electrodes, leading to a reduced

difference measurement. Conversely, moving the other measurement electrode m− in

the +x direction increases the distance between measurement electrodes, increasing

the difference in measured potential. A similar thought experiment for the stimulus

electrodes leads to the conclusion that these plots show the generally expected trends for

electrode movement. The measurement electrodes in this model are separated by a third

of the distance of the stimulus electrodes, so that the scaling between calculated stimulus

and measurement Jacobians is approximately correct as well. Our two independently

developed implementations of the Fréchet derivative, based on (Dardé et al 2012), were

found to give the same solution.

For large contact impedances, all methods performed well and gave similar results

(figure 9a). For small contact impedances, the näıve perturbation method became

unstable for our selected perturbation step (∆ = 10−6 m). Changing the perturbation

step size modified the threshold at which the näıve perturbation became unstable but

never completely removed the instability (figure 10). This unavoidable instability was

expected because there are practical upper and lower limits on the perturbation step

size. The mesh density and electrode diameter were varied but these did not noticeably

affect the plot of contact impedance versus perturbation size. For large step sizes, the

“minimal perturbation for large steps” method gave “true” results to the limit where

adjacent electrodes collided because the technique limits mesh element deformations

to half an element’s area. The rank-one update and näıve methods failed when nodal

perturbations moved nodes beyond the enclosing elements leading to incorrect FEM
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Figure 9: Four Jacobian estimation methods for the m+ and m− electrodes; (light

grey) näıve perturbation, (dark grey) minimal perturbation, (green) matrix rank-one

update (Gómez-Laberge and Adler 2008), and (blue) Fréchet derivative (Dardé et

al 2012); showing variations in the Jacobian of the m+ measurement electrode for

tangential surface movements Jm,x
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Figure 10: Perturbation instability; the point at which the perturbation Jacobian

error became large relative to the rank-one update (||J∆ − JR1|| > 0.05, hmax = 0.1

m, de` = 0.2 m), variation of mesh density hmax and electrode diameter de` showed

nearly identical plots, perturbation instability appeared to depended strongly on contact

impedance zc and step size δx, on the left perturbations fail when the perturbation

approaches numeric precision limits δx → ε = 1 × 10−16, on the right of the plot the

näıve perturbations fail for δx > hmin = 0.017 m the minimum element size

meshes and an erroneous Jacobian.

The rank-one perturbation is accurate when contact impedance was large relative to

the conductivity of the adjacent domain because, in the limit (lim zc →∞), the contact

impedance does not influence current flow through the electrode. On the other hand,

the rank-one perturbation lacks derivatives of the contact impedance with respect to

position, as the contact impedance and electrode shape are key components of the CEM,

and these may become significant at some threshold. The missing derivatives from the

CEM may be one source of small discrepancies in the näıve and minimal perturbations

when compared to the rank-one perturbation results for small contact impedances.

Finite precision numeric accuracy will set a lower limit on contact impedance at which

point a shunt electrode model should be adopted. Given that the electrode shape was

being held constant for the implementation of the rank-one perturbation used here, we

believe these effects should be small.

For small contact impedances, we observed that the Fréchet derivative tends to zero.

In the context of (23), this behaviour makes sense. The method uses the difference in

potential across the electrode to calculate the effect of electrode movement which is

subject to the limits of finite precision calculations in the FEM model of the voltage

distribution. A contact impedance that tends towards zero will have a nearly zero

potential difference across the electrode as it approaches a shunt electrode model. It

turns out, in these simulations, that the Fréchet derivative will then tend to zero as

the potential across the electrode drops more rapidly than the contact impedance. A

similar reduction in potential difference across the electrode would occur for very small

electrodes or weak stimulus. Indeed, for PEM electrodes the movement Jacobian breaks

down under the Fréchet derivative (Crabb 2014, pp. 103–105). (In the continuum

model Fréchet with a Dirac delta input current, the sensitivity to normal perturbations
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are unbounded on driven electrodes and zero elsewhere. This indicates that there would

likely be numerical problems if one tried to implement a PEM normal electrode position

Jacobian.) We note that this behaviour is at odds with the perturbation method results.

The Fréchet derivative approaching zero for small contact impedances is inaccurate:

the other methods presented here can correctly estimate an electrode position

Jacobian under these conditions while the Fréchet derivative fails. This is somewhat

disappointing, as the original proposition for the Fréchet derivative, beyond its

computational efficiency, is that it accurately captures the CEM effects which are

much more apparent for low contact impedances. The other methods succeed under

low contact impedance conditions by sampling the rate of change in the electric fields

beyond the electrode’s boundary. This suggests a relatively simple idea for “fixing”

the Fréchet derivative: to sample just beyond the electrode’s boundary. Clearly, this

would have deep implications on the mathematical derivation of the Fréchet derivative:

modifications are not considered further in this work.

All methods exhibit the same stable and uniform behaviour for the majority of

variations in electrode diameter (figure 9b). For electrode diameters where the electrodes

nearly touch, the absolute magnitude of the Jacobian grows. The case where electrodes

nearly cover the boundary was not explored further, as all methods seemed to be in

strong agreement.

For very coarse meshes, the Fréchet derivative was found to underestimate the

Jacobian by some form of systematic but noisy offset. This noise was possibly due

to the sensitivity of the Fréchet derivative to errors in the FEM estimated voltages

under the electrodes. The other perturbation-based methods rely solely on the change

in measured electrode voltage, rather than a difference between measured voltage and

voltage under the electrode. The näıve perturbation, minimal perturbation and rank-

one matrix update gave consistent results for all tested mesh densities. We note that

the sign was correct in all cases: a line search could correct for any error introduced by

the Fréchet derivative method.

Calculation of the Jacobian can take a considerable fraction of the calculation total

time for a single-step Gauss-Newton conductivity solution (Boyle et al 2012b). Fast

calculation of the electrode position Jacobian can improve productivity in algorithm

development and throughput for Gauss-Newton iterations where the Jacobian is updated

at each iteration. For a particular forward model (hmax = 0.1 m, zc = 1014Ω · m,

de` = 0.2 m), the average calculation times for each electrode position Jacobian

implementation were measured in Matlab‡ (Intel Core i5-2500K, 3.30 GHz, 32 GB

mem) (figure 11). Results are shown with and without EIDORS caching enabled. The

EIDORS caching feature was not disabled because functions were called multiple times

for certain operations, knowing that the cache will filter out most of the computational

cost of these calls. EIDORS uses a function memoization implementation where a cached

function result is returned when function inputs match a cache entry (Michie 1968). To

‡ Measurements performed with the timeit Matlab function.
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control the cache hit-rate, the ground node in the forward model was perturbed slightly

so that the top-level function memoization would initially be defeated. Assembly and

a single forward solution were not included in the timings, as these would already

have been calculated in a Gauss-Newton iteration, and were considered a sunk cost.

Subsequent calls to memoized results within a method benefited from the efficiency of

a cached result if the forward model was not modified. When the cache was enabled

or disabled, results showed that the Fréchet derivative method was fastest, while the

rank-one update method was a close second.

Observing the profiling results, it was apparent that the vast majority of the

computational time for the perturbation Jacobian (up to 96%) was consumed in

recomputing the element shape functions E and then reassembling the system matrix A.

With EIDORS’ memoized caching mechanism, the entire system matrix was recomputed

when a nodal perturbation was detected. For the specific case of computing the electrode

position Jacobian, a finer grained caching of the inverted element matrices E, prior to

being combined into the system matrix, considerably sped up the nodal perturbation

methods because a handful of element matrices were recomputed. These improvements

were implemented for the “min. perturb” method.

We note that the rank-one update, essentially, performs this optimization by only

modifying elements of the system matrix that are directly connected to the perturbed

node. The Fréchet derivative method avoids the system matrix computation costs

altogether by not modifying the system matrices. It is possible, for a “complete”

stimulus set where all possible combinations of stimulus electrodes are used, that no

further forward solutions are required than have already been computed to that point

in the Gauss-Newton algorithm. Such a computational saving is hard to quantify in a

limited test bench such as the one presented here, but could reduce the incremental cost

of calculating a electrode position Jacobian to a few multiply-and-accumulate operations

if the forward solution nodal voltages are already available from the conductivity

Jacobian.

10. Discussion

Boundary movement or imprecise electrode placement results in modelling errors that

can cause significant reconstructed conductivity artifacts. Modelling boundary and

electrode position estimates to address modelling errors and dynamic movement can

correct some artifacts by incorporating electrode position as inverse problem parameters

to be resolved. The Jacobian calculation contributes to determining what parameter

changes may be beneficial in minimizing a cost function.

In this work, four methods for calculating the electrode position Jacobian were

compared through simulation on a simplified two-dimensional homogeneous half-space.

These methods were: the perturbation method, the rank-one matrix update (Gómez-

Laberge and Adler 2008), and the Fréchet derivative (Dardé et al 2012). Simulations

demonstrated that:
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näıve perturb

system matrix (2.640 sec)
fwd solve

(0.096 sec)

min. perturb
update system matrix
(0.221 sec)

rank-one update
specific calc
(0.223 sec)
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Figure 11: Electrode position Jacobian compute time for tangential movement; (a)

total run times compared between the different methods with and without function

memoization (caching), (b) break down of timing where, for the rank-one update and

Fréchet derivative, the clear boxes indicate a “sunk cost” that is already available if

caching is enabled since the system matrix has not been perturbed

• Variations in electrode diameter gave stable results for all methods up to diameters

where adjacent electrodes nearly touched.

• The perturbation method became unstable for small contact impedances depending

on perturbation magnitude.

• The Fréchet derivative method was sensitive to coarse meshes and was not

appropriate for small contact impedances.

• The Fréchet derivative and rank-one update methods were very fast, especially

when accounting for previously solved forward problems in an iterative solution.

Based on these findings we recommend the Fréchet derivative for calculating the

electrode position Jacobian when contact impedances are greater than the surrounding

resistivity distribution and the rank-one matrix update otherwise. When using the

Fréchet derivative we recommend evaluation at two or more mesh densities to confirm

that the Jacobian solution has converged.

We observed that from a computational point of view, the Fréchet derivative is most

efficient, particularly when forward solutions are already available from calculating the

conductivity Jacobian via the adjoint method or due to forward solutions previously

calculated in an iterative reconstruction. The rank-one update is more efficient than

the perturbation methods, but slower than the Fréchet derivative.
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For conductivity changes it is known that the formal Fréchet derivative and

discretisation operations commute as demonstrated in (Crabb 2014, p. 63). Thus for

conductivity changes one can use either formulation to estimate the Jacobian matrix

with the same accuracy, with the preferred choice, for a given measurement protocol

and discretisation, being the one with minimal computational cost. For boundary

shape and electrode position changes we have no formal proof that the derivative of

discretisation (rank-one perturbation method) and discretisation of derivative (Fréchet

derivative method) agree for a given discretisation. Indeed the results demonstrated in

this paper suggest that the two methods diverge as contact impedance approaches zero

(zc → 0). In the absence of a formal understanding, we recommend the derivative of

discretisation (rank-one perturbation method) for synthetic (simulation) data, and the

discretisation of the Fréchet derivative (Fréchet derivative method) for measured data. If

one has access to voltage data from a simulated boundary shape perturbation (synthetic

data), this implies working at a given discretisation level, and it seems plausible that the

rank-one perturbation method would be most accurate. If one has access to voltage data

from a continuum boundary shape deformation (as with real data) it seems appropriate

to use the Fréchet derivative method to accurately model the continuum deformation.

If a large change in electrode displacement is required to explain the data, a

perturbation-based update will fail: overlapping element shape functions may be

calculated. Overlapping element shape functions may lead to invalid FEM solutions. A

superficial “fix” is to apply greater regularization to restrict the step size but this does

not help achieve an accurate answer if larger movements are required to explain the

measurements. In short, Gauss-Newton iterative solutions may make use of the rank-

one update in calculating the Jacobian but will need an alternate strategy to safely

update the FEM system matrix when movements exceed a fraction of the minimum

element height of the mesh. Gauss-Newton updates and line search test points require

an updated forward model where the electrode locations are updated. For tangential

movements, we recommend a method where the new electrode location would be used

to identify candidate nodes on the FEM mesh. Nodes from this set that are on the

boundary of the electrode would then be perturbed to align them exactly with the new

electrode location. This method is preferable to a mechanism where the whole mesh is

distorted to push an electrode to its new location because it maintains the quality of the

mesh elements, as measured by in-circle to out-circle ratio or other mesh quality criteria

(Shewchuk 1996, Knupp 2003, Pébay and Baker 2003), which is important to the final

FEM solution error (Berzins 1999). Potentially, the system matrix may be updated

more efficiently than a complete recalculation by only updating shape sub-matrices S(e)

containing nodes that were perturbed and any electrode-to-node connectivity.

Removing the mesh node movements from the perturbation in calculating an

electrode position Jacobian is only possible when the electrode movement precisely agree

with existing node locations. This is not generally true, but for a fine enough mesh

provides a means of testing the theory that perturbations are the cause of numerical

instability for the näıve perturbation method in contrast to the improved stability of the
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minimal perturbation method. Experiments applying a “no node perturbation” change

precisely agree with the minimal perturbation method over a range of mesh densities

when the step change agrees with node placements. These experiments show that the

perturbation of the electrode edge nodes is not significantly affecting the numerical

accuracy of the solutions: a better perturbation strategy is not likely to be possible.

Unlike the conductivity Jacobian, the electrode position Jacobian may be nearly

sparse for many common electrode configurations. Even for electrodes with very low

contact impedance, effectively shunting current across their surface, the gaps between

inactive electrodes must be small to have a measurable effect on the electrode position

Jacobian. The sparsity of the electrode position Jacobian can be exploited to: reduce the

number of calculations to build the Jacobian, reduce storage (for example, Compressed

Sparse Row or Compressed Sparse Column storage), and expedite calculations using the

Jacobian (for example, sparse matrix algebra).

Movement estimates tangential to the surface were faithfully calculated for many

scenarios in this work. Using the same framework, movement normal to the surface was

simulated with a näıve perturbation implementation, but appears to suffer from severe

numerical instabilities that render the resulting Jacobian unusable in its current form.

A Fréchet derivative for the normal component has also been developed (Dardé et al

2013) and offers the possibility of a stable Jacobian for normal boundary movement.

The methods in this work can be extended to normal and tangential movement in three

dimensions; preliminary results for three-dimensional tangential perturbation methods

show similar outcomes.
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