Meet "the Big Time"

SPATIO-TEMPORAL REGULARIZATION OVER MANY FRAMES

ALISTAIR BOYLE UNIVERSITY OF OTTAWA EIT2017, June 21–24, 2017

IMAGING

A SINGLE FRAME OF DATA

University of Ottawa $2\,/\,12$

Monitoring

30 FRAMES PER SECOND

Is our movie over regularized?

A. BOYLE, 2017 Spatio-Temporal Regularization over Many Frames UNIVERSITY OF OTTAWA

3/12

EXAMPLE: A PEEP TRIAL

Pig incremental/decremental PEEP trial¹

5000 frames @ 30 frames per second; GREIT² on each frame

¹I. Frerichs, P. A. Dargaville, T. Dudykevych, *et al.*, "Electrical impedance tomography: A method for monitoring regional lung aeration and tidal volume distribution?" *Intensive Care Medicine*, vol. 29, no. 12, pp. 2312–2316, Dec. 2003.

²A. Adler, J. Arnold, R. Bayford, et al., "Greit: A unified approach to 2D linear EIT reconstruction of lung images," *Physiological Measurement*, vol. 30, no. 6, S35–S55, Jun. 2009.

A. Boyle, 2017

UNIVERSITY OF OTTAWA

SPATIO-TEMPORAL REGULARIZATION OVER MANY FRAMES

GAUSS-NEWTON: SPATIAL

SINGLE-STEP OR ITERATIVE

$$\mathbf{x}_{n+1} = (\mathbf{J}^\mathsf{T} \mathbf{W} \mathbf{J} + \lambda \mathbf{R}^\mathsf{T} \mathbf{R})^{-1} \left(\mathbf{J}^\mathsf{T} \mathbf{W} \mathbf{b} + \lambda \mathbf{R}^\mathsf{T} \mathbf{R} (\mathbf{x}_* - \mathbf{x}_n) \right)$$

- **J** Jacobian
- W inv noise cov
- λ hyperparameter
- **R** spatial regularization

- **b** measurements
- \mathbf{x}_* prior estimate
- \mathbf{x}_0 initial guess
- \mathbf{x}_n last estimate
- \mathbf{x}_{n+1} next estimate

A. BOYLE, 2017 Spatio-Temporal Regularization over Many Frames University of Ottawa 6/12

GAUSS-NEWTON: SPATIO-TEMPORAL

BY BLOCK-WISE EXPANSION

$$\mathbf{I} \otimes \mathbf{J} = \boxed{\begin{matrix} \mathbf{J} \\ \mathbf{J} \end{matrix}} \qquad \mathbf{\Gamma} \otimes \mathbf{R} = \boxed{\begin{matrix} \mathbf{R} & \mathbf{R} \\ \mathbf{R} & \mathbf{R} \\ \mathbf{R} & \mathbf{R} \end{matrix}}$$

The spatial Gauss-Newton update becomes a spatio-temporal Gauss-Newton update³ $\operatorname{vec}(\mathbf{X}_{n+1}) = ((\mathbf{I} \otimes \mathbf{J})^{\mathsf{T}}(\mathbf{I} \otimes \mathbf{W})(\mathbf{I} \otimes \mathbf{J}) + \lambda(\mathbf{\Gamma} \otimes \mathbf{R})^{\mathsf{T}}(\mathbf{\Gamma} \otimes \mathbf{R}))^{-1}$ $((\mathbf{I} \otimes \mathbf{J})^{\mathsf{T}}(\mathbf{I} \otimes \mathbf{W})\operatorname{vec}(\mathbf{B}) + \lambda(\mathbf{\Gamma} \otimes \mathbf{R})^{\mathsf{T}}(\mathbf{\Gamma} \otimes \mathbf{R})\operatorname{vec}(\mathbf{X}_{*} - \mathbf{X}_{n}))$... can be simplified a bit but still has the same storage requirements

exponential memory storage and runtime growth as # frames, squared

³T. Dai, M. Soleimani, and A. Adler, "EIT image reconstruction with four dimensional regularization," *Medical & Biological Engineering & Computing*, vol. 46, no. 9, pp. 889–899, 2008.

A. Boyle, 2017

UNIVERSITY OF OTTAWA

Spatio-Temporal Regularization over Many Frames

photo: flickr/jamesyu (CC-BY-NC-SA 2.0

KRONECKER PRODUCT IDENTITY

identity:

$$\mathsf{vec}(\mathsf{AXB}) = \mathsf{vec}(\mathsf{C}) = (\mathsf{B}^\mathsf{T} \otimes \mathsf{A})\mathsf{vec}(\mathsf{X})$$

which transforms our spatio-temporal Gauss-Newton update into

$$\operatorname{vec}(\mathbf{J}^{\mathsf{T}}\mathbf{W}\mathbf{J}\mathbf{X}_{n+1} + \lambda \mathbf{R}^{\mathsf{T}}\mathbf{R}\mathbf{X}_{n+1}\mathbf{\Gamma}\mathbf{\Gamma}^{\mathsf{T}}) = \\\operatorname{vec}\left(\mathbf{J}^{\mathsf{T}}\mathbf{W}\mathbf{B} + \lambda \mathbf{R}^{\mathsf{T}}\mathbf{R}(\mathbf{X}_{*} - \mathbf{X}_{n})\mathbf{\Gamma}\mathbf{\Gamma}^{\mathsf{T}}\right)$$

Note that we've removed all the Kronecker products that blew up our matrices, but we now have X_{n+1} in the middle of the equation

A. BOYLE, 2017 Spatio-Temporal Regularization over Many Frames University of Ottawa 9 / 12

INNER CONJUGATE GRADIENT

$$\operatorname{vec}(\mathbf{J}^{\mathsf{T}}\mathbf{W}\mathbf{J}\mathbf{X}_{n+1} + \lambda \mathbf{R}^{\mathsf{T}}\mathbf{R}\mathbf{X}_{n+1}\mathbf{\Gamma}\mathbf{\Gamma}^{\mathsf{T}}) = \\\operatorname{vec}\left(\mathbf{J}^{\mathsf{T}}\mathbf{W}\mathbf{B} + \lambda \mathbf{R}^{\mathsf{T}}\mathbf{R}(\mathbf{X}_{*} - \mathbf{X}_{n})\mathbf{\Gamma}\mathbf{\Gamma}^{\mathsf{T}}\right)$$

Use an iterative Conjugate Gradient⁴ solution in place of direct left-divide (LU decomposition).

- left-hand side computed on-the-fly at each inner CG iteration
- right-hand side computed once at each outer GN iteration
- each side should be computed to minimize matrix sizes, maximize sparsity

... still slow

until we limit the number of iterations, watch convergence and adjust stopping criteria, which could be done rigourously $\!\!\!^5$

A. Boyle, 2017

UNIVERSITY OF OTTAWA

SPATIO-TEMPORAL REGULARIZATION OVER MANY FRAMES

 $^{^4}$ J. Shewchuk, "An introduction to the conjugate gradient method without the agonizing pain," $\,$ Carnegie Mellon University, Tech. Rep., 1994.

⁵A. Rieder, "Inexact newton regularization using conjugate gradients as inner iteration," *SIAM Journal on Numerical Analysis*, vol. 43, no. 2, pp. 604–622, 2006.

Better

AND NUMERICALLY EQUIVALENT

NAPKIN VIEW

- what: monitoring approaches lead to time series data, lots of data @ 30 f/s!
- why: do we filter data frames over time (ala FBP for spatial) or

"Can we do better?"

■ how: regularize over space and time... Spatio-Temporal

- but: math by boxes... it gets too big!
- how: a Kronecker product identity that almost works
- how: "But we don't do that!" .. Conjugate Gradients
- bonus: cyclical events ... ECG-gated data
- bonus: regional spatio-temporal regularization by block-wise matrices

A. BOYLE, 2017 Spatio-Temporal Regularization over Many Frames