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Abstract: Regularizing over both spatial and temporal spaces
for EIT data can lead to very large matrices which can be chal-
lenging to compute. The Kronecker product identity may be
leveraged with the Conjugate Gradient method to construct a
system of equations that scales linearly with the number of
data frames collected and reconstruction parameters.

1 Introduction
Gauss-Newton methods are generally used to reconstruct an
Electrical Impedance Tomography (EIT) conductivity image
for a single frame of data. Multiple frames of data may be
reconstructed together and have regularization applied across
them, leading to spatio-temporal regularization.

2 Gauss-Newton
The Gauss-Newton iterative update (GN-update) is

xn+1 =(J2 + λR2)
−1

(
JTWb + λR2(x∗ − xn)

)
(1)

where J2 = JTWJ and R2 = RTR. New parameters xn+1

are calculated using results from iteration n and with a prior
estimate x∗, where the Jacobian J is calculated based on xn,
the measurements are weighted by an inverse noise covari-
ance matrix W, and the reconstruction is regularized by R
with a hyperparameter λ controlling regularization strength.

Following [1], the GN-update (1) may be expanded as a
block-diagonal matrix to handle many frames in a time-series
of data and reconstruct these frames simultaneously while ap-
plying regularization across time. Entries in the time series
are assigned an exponential smoothing Γ, so that adjacent
frames are assumed to be strongly correlated. The same spa-
tial regularization R is applied to every frame’s reconstruc-
tion.

I ⊗ J =
J

J
J

Γ ⊗ R =
R R R
R R R
R R R

(2)

The GN-update becomes
vec(Xn+1) =

(
(I ⊗ J)T(I ⊗ W)(I ⊗ J)+

λ(Γ ⊗ R)T(Γ ⊗ R)
)−1(

(I ⊗ J)T(I ⊗ W)vec(B)+

λ(Γ ⊗ R)T(Γ ⊗ R)vec(X∗ − Xn)
)

(3)
where X denotes the reconstruction parameters joined into
a matrix with one column per frame and the vec() operator
reshapes this matrix into a single column vector. The mea-
surements B are treated similarly. Using Kronecker product
identities, (3) may be written

vec(Xn+1) = (I ⊗ J2 + λΓ2 ⊗ R2)
−1(

I ⊗ (JTW)vec(B) + λΓ2 ⊗ R2vec(X∗ − Xn)
)

(4)

where Γ2 = ΓTΓ. This formulation can result in very large,
dense matrices I ⊗ J2. The Wiener filter form, as suggested
in [1], may help though it still gives the large dense matrices.
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Figure 1: Runtime for a 16 electrode 2D Finite Element mesh (1600
elements) for 1 to 20 frames of 208 measurements using Gauss New-
ton (GN) (4) and Conjugate Gradient (CG) (7); CG scales to many
frames of measurement data while GN runs exponentially slower as
more frames are added

3 Conjugate Gradient
The Conjugate Gradient (CG) update [2] efficiently calculates
the inverse in (4) by iterative evaluation of

(I ⊗ J2 + λΓ2 ⊗ R2)vec(Xn+1) =

I ⊗ (JTW)vec(B) + λΓ2 ⊗ R2vec(X∗ − Xn) (5)
A key identity of the Kronecker product may be used to sig-
nificantly reduce the computational requirements

vec(AXB) =vec(C) = (BT ⊗ A)vec(X) (6)
which transforms (5) into

vec(J2Xn+1 + λR2Xn+1Γ
T
2) =

vec
(
JTWB + λR2(X∗ − Xn)Γ

T
2

)
(7)

where, by judicious choice in the order of operations, one can
maintain a minimal storage footprint. Note that in the GN
solution, solving (5) would result in the same very large ma-
trices as (4), while for CG the Kronecker products do not need
to be expanded.

The CG method typically computes the solution Xn+1 to
a certain precision. For ill-posed problems, the accuracy of
the parametrization is limited by measurement noise and reg-
ularization. Stopping the conjugate gradient iterations early
avoids getting trapped in fruitless iterations. Rigorously CG
stopping criteria for EIT CG-updates have been developed in
[3], but were heuristically found in this work through plotting
of the CG error estimates. Halting CG iterations when the
algorithm started to oscillate gave nearly identical results.

4 Discussion
Spatio-temporal regularization combining the techniques de-
scribed in this work, the Kronecker product identities and
the Conjugate Gradient method, may be brought together to
tackle previously uncomputable EIT data sets.
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