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SUMMARY
Electrical Resistivity Tomography (ERT) is increasingly being used to investigate un-
stable slopes and monitor the hydrogeological processes within. But movement of elec-
trodes or incorrect placement of electrodes with respect to an assumed model can in-
troduce significant resistivity artefacts into the reconstruction. In this work, we demon-
strate a joint resistivity and electrode movement reconstruction algorithm within an
iterative Gauss-Newton framework. We apply this to Electrical Resistivity Tomogra-
phy (ERT) monitoring data from an active slow-moving landslide in the UK. Results
show fewer resistivity artefacts and suggest that electrode movement and resistivity can
be reconstructed at the same time under certain conditions. A new “two and a half”-
dimensional (2.5D) formulation for the electrode position Jacobian is developed and
is shown to give accurate numerical solutions when compared to the adjoint method
on three-dimensional models. On large finite element meshes, the calculation time
of the newly developed approach was also proven to be orders of magnitude faster
than the three-dimensional adjoint method and addressed modelling errors in the two-
dimensional perturbation and adjoint electrode position Jacobian.
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1 INTRODUCTION

Electrical Resistivity Tomography (ERT) is a geophysical
method where current is injected between pairs of electrodes
attached to the surface of the earth while the voltage differ-
ences are measured between other electrode pairs. From this
data, one may reconstruct a resistivity distribution for the
near surface earth that best fits the available data. For ERT,
relatively small electrode movements or boundary modelling
errors can lead to reconstructions with resistivity artefacts
so severe that the resulting image is difficult to interpret
(Zhou & Dhalin 2003). Similar reconstruction artefacts have
been observed for biomedical Electrical Impedance Tomog-
raphy (EIT) where the fundamental mathematical problem
is identical to ERT (Adler et al. 1996; Boyle & Adler 2011;
Adler et al. 2011).

Intermittent electrode movement is expected during

long-term monitoring of an active landslide site. One could
re-survey the electrode locations after each movement, but
this would be time consuming and expensive, particularly
for remote locations. Changes in landslide topography are
frequently accompanied by changes in the resistivity distri-
bution of the slope: changes in soil properties, such as water
saturation, affect slope stability and resistivity.

A resistivity reconstruction that does not account for
electrode movement, when movements have occurred, will
tend to fit the data poorly. Attempts to force fit a resistiv-
ity distribution will, in most cases, lead to images with se-
vere resistivity artefacts which, without further information,
could be misinterpreted. Simultaneously adjusting electrode
position and resistivity can allow for better data fit, reduced
resistivity artefacts, and indications of electrode movement.
The methods described here separate the confounding fac-
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tors, electrode movement and resistivity changes, which
have long hindered ERT landslide monitoring attempts.

Previous work on electrode movement has largely fo-
cused on two-dimensional electrode position changes in
the plane of the electrodes. In two dimensions, changes in
boundary shape that are conformal do not result in artefacts
(Boyle et al. 2012a). Modelling in three dimensions is im-
portant because it reflects the finite size of the electrodes and
the resulting current flow. For three-dimensional reconstruc-
tions, conformal deformations are limited to rotation, scaling
and translation which would normally be identified through
an appropriate site survey. Three-dimensional resistivity re-
constructions can be prohibitive to calculate for a given level
of fidelity and numerical convergence. The so-called “two
and a half”-dimensional (2.5D) method (Dey & Morrison
1979) combines a two-dimensional parametrization of the
resistivity and electrode positions with a three-dimensional
model of current flow in the ground. The method can enable
significant reductions in the computational requirements for
meshing and current density calculations while producing
accurate results with respect to equivalent three-dimensional
models.

Electrode movement and resistivity have been recon-
structed for biomedical problems where changes both elec-
trode movement (±1% of electrode spacing) and resistivity
(±50%) have been relatively mild, enabling Gauss-Newton
difference solutions (Soleimani et al. 2006; Jehl et al.
2015), and for large deformations on cylindrical domains
with surface-normal deformations (Dardé et al. 2013a,b;
Hyvönen et al. 2014) in simulation and on tank data.

For geophysics, the resistivity contrasts are generally
strong, varying by orders of magnitude. These strong con-
trasts combined with large electrode movements, much
greater than 1% of electrode spacing, necessitate an iterative
solution because the combined effects of the electrode move-
ment give highly nonlinear interactions. Similar approaches
are also currently being developed by other researchers (Kim
et al. 2014; Wagner et al. 2015; Loke et al. 2015, 2016,
2017). Results on field data have been somewhat mixed and
data dependent.

One approach to account for electrode position mod-
elling errors is to alternate between an electrode position
update and resistivity update (Wilkinson et al. 2010, 2016).
Such an orthogonal greedy optimization approach may be
slow to converge, or even fail to converge, because descent
over the optimization surface is restricted to movement par-
allel to the axes (Cormen et al. 1990). Ideally, both electrode
movement and resistivity should be reconstructed simulta-
neously so that updates can descend in the globally optimal
direction across the objective function.

In this work, joint electrode position and resistivity re-
construction methods were applied, in 2.5D, to two data sets
(Fig. 1 and Fig. 2, line#1 and line #5) from an active land-
slide in the UK. An efficient and accurate method for cal-
culating the electrode position Jacobian on a 2.5D resistiv-
ity model was developed. This work is motivated by devel-
opments in Boyle & Adler (2010); Boyle (2010) for two-
dimensional electrode movement, and Boyle et al. (2014);
Boyle (2016); Boyle & Adler (2016) where this data set
and preliminary results were presented. A two-dimensional
cross-sectional Finite Element Method (FEM) model of the
local slope topology was built, with electrodes modelled us-

ing the Complete Electrode Model (CEM) (Somersalo et al.
1992; Rücker & Günther 2011). We reconstruct electrode
movement and resistivity in an iterative Gauss-Newton al-
gorithm, showing that under certain conditions both can be
simultaneously reconstructed.

2 BACKGROUND

Resistivity imaging has been used in geophysical investiga-
tions of the behaviour and precursors of landslides and fail-
ure surfaces (Jongmans & Garambois 2007; Perrone et al.
2004; Lapenna et al. 2005; Lebourg et al. 2005; Naudetb
et al. 2008; Sass et al. 2008). The technique is attractive
because resistivity is strongly dependent on water satura-
tion, fracturing, clay content and weathering which are all
key factors in slope stability (Piegaria et al. 2009). Slopes
may be monitored over time to observe changes in these key
parameters using automated systems to collect and analyse
data on a daily basis (Kuras et al. 2009; Lebourg et al. 2010;
Supper et al. 2014). Difference images may show immedi-
ate changes in water saturation (Suzuki & Higashi 2001;
Friedel et al. 2006; Jomard et al. 2007) but are limited in
their ability to perform long-term monitoring due to back-
ground resistivity changes and electrode movements. As il-
lustrated in Fig. 3, small amounts of electrode movement
may introduce significant artefacts (Zhou & Dhalin 2003;
Oldenborger et al. 2005; Wilkinson et al. 2008). These arte-
facts may be reduced by accounting for changes in electrode
position (Uhlemann et al. 2017).

An active landslide was identified in North Yorkshire,
UK (54◦06’39.2”N, 0◦57’34.9”W) and has been monitored
since 2008 (Chambers et al. 2011; Wilkinson et al. 2016).
The landslide is a very slow to slow moving composite mul-
tiple earth slide-earth flow (Uhlemann et al. 2016b), where
a central portion of the slope has moved downhill by up to
3.5 m a year in some instances (Fig. 1). The slope itself ex-
poses four formations: the Dogger Formation (DF), Whitby
Mudstone Formation (WMF), Staithes Sandstone Forma-
tion (SSF) and Redcar Mudstone Formation (RMF), from
top to bottom. The interfaces between sedimentary layers lie
horizontally, with a gentle 5° dip to the North, determined
through comparison of material interfaces at surrounding
exposed slopes in the region (Chambers et al. 2011). The
WMF, as the name implies, is a mudstone clay-based rock
that is highly weathered and prone to movement during peak
water saturation periods at Hollin Hill, occurring annually in
the winter through early spring wet-season. The underlying
SSF and unweathered RMF are structurally more competent,
and landsliding is postulated to occur within the WMF (Uh-
lemann et al. 2016b). The slope lies at an average angle of
14° over a change in elevation of 40 m. The landslide move-
ment is determined by translational movements upslope of
the WMF-SSF interface. These lead to a loss of support of
the local slope of the back-scarp, causing rotational failure.
The mass accumulation at the WMF-SSF interface, driven
by these translational movements, and elevated pore pres-
sures then cause flow movements which form lobes (Uhle-
mann et al. 2016a,b).

A grid of five rows of thirty-two permanently installed
electrodes travelled along with these movements, shifting
their positions relative to each other (Fig. 2). An automated
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(a) slope rupture at main scarp, hilltop (b) accumulated slipped material at landslide toe, mid-slope

(c) satellite image 2016, overlaid electrode locations Feb 2014

base station

#1
#5

Figure 1. Slope failures at Hollin Hill; (a) rotational failures near the top of the slope above line#5, June 2015, (b) earth flow at the toe of a landslide where
line#5 runs through mid-slope with electrodes throughout the slipped material, June 2015, (c) satellite image of the hillside (2016), showing four landslide
“lobes”, five lines of thirty-two electrodes as of Feb 2014, and base station location.
[(c) Satellite imagery ©2016 DigitalGlobe, Getmapping plc, Infoterra Ltd Bluesky.]

impedance imaging survey was executed bi-daily and data
were transmitted to a remote office for storage and analysis.
In 2008–2009, a middle section of line#1 exhibited a trans-
lational failure with movements of up to 1.6 m. In 2013–
2014, upper and middle segments of line#5 had rotational
and translational failures of up to 3.5 m.

The dipole-dipole measurement protocol used for line#1
and line#5 are visualised in Fig. 4 and Fig. 5, showing the se-
quence of quadrupolar measurements with stimulus dipoles
in red and measurement dipoles in blue. A single differ-
ence measurement are captured as one row of the protocol
in the figure. In the adjacent vertical strip chart, the hori-
zontally aligned measurements at the initial time (green) is
contrasted with the homogeneous resistivity estimate (red)
of what those measurements would be, and the change in
measurements from initial to final measurement (blue). The

rightmost strip chart shows the estimated error for each mea-
surement as estimated from differences between reciprocal
pairs of data for the initial measurements (green) and final
measurements (blue). The figure serves to illustrate three
challenges with this data set. First, the measurements do not
fit, or nearly fit, a homogeneous resistivity model. Second,
the change between the initial and final measurements (re-
sistivity and movement) is as much as that caused by the in-
homogeneous resistivity distribution in the initial measure-
ments (resistivity only) for some data. Third, the measure-
ment error varies over time so that the initial and final mea-
surements have different associated error estimates. The se-
quence of measurements for line#5 (Fig. 5) started at the top
of the slope and ran to the base, but is equivalent to that
shown for line#1 (Fig. 4). The final measurements for line#5
have significantly worse reciprocal errors, but are the best of
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Figure 2. Electrode locations; (a) electrode locations for five lines of thirty-two electrodes each, line#1 (blue) to line#5 (green) as of February 2014, (b) where
electrodes were 10 mm x 170 mm spikes of stainless steel selected for its conductivity, low cost, and corrosion resistance.

(a) no electrode movement

(b) 5% electrode movement

(c) 25% electrode movement

Resistivity [Ωm]

Figure 3. [From Boyle et al. (2017), Fig. 2.] Electrode movement artefacts;
simulated reconstructions with a conductive and insulating target (rectan-
gular and square outlines, respectively), each with two electrodes (electrode
#2 and #12 of thirty-two electrodes numbered left-to-right at 5 m intervals)
having electrode displacements of (a) 0%, (b) 5% and (c) 25% of elec-
trode spacing on a two-dimensional half-space reconstruction (40 dB SNR,
λ = 0.01, Laplace regularisation, Wenner measurement pattern). Single or
well separated electrode location errors introduce characteristic “ringing”
artefacts that can overwhelm resistivity-based information. [Reproduced, in
part, from Boyle et al. (2017), Fig. 2., with author permission.]

many data sets examined for a post-movement data set on
line#5.

3 PRIOR RECONSTRUCTIONS AT HOLLIN HILL

Electrode movement has been previously reconstructed for
line#1 data (2008/2009) along with separate resistivity sec-
tions (Wilkinson et al. 2010). The algorithm used in that
instance achieved estimates of within 0.2 m (4% of elec-
trode spacing) of the electrode’s true positions as mea-
sured by Real-Time Kinematic Global Positioning System
(RTK GPS)?. An initial resistivity-only reconstruction with
known electrode positions gave a plausible distribution that
was in good agreement with available geological evidence:
borehole and auger data, evaluation of local geology, aerial
LiDAR, differential GPS, lab correlation of representative
samples to measured conductivities, piezometric pore pres-
sure measurements, and in-situ rainfall and temperature
records (Fig. 6) (Chambers et al. 2011; Merritt et al. 2014).
Resistivity reconstructions of data collected after movement
exhibited artefacts. These artefacts were reduced when re-
constructed movements were incorporated. The electrode
movement was penalised in the upslope direction. The po-
sition Jacobian was estimated based on an analytic half-
space model with a homogeneous resistivity assigned to each
group of measurements based on electrode separation. The
electrode movement was then reconstructed by minimising

arg min

√∑
i

|ei|2 + α
∑
j

|mj |+ β
∑
j

θ(mj)|mj | (1)

for weighting factors α = 0.06 m−1, β = 0.32 m−1, Heavi-
side step function θ, movement mj , and misfit ei = rb − ra
as the difference between predicted rb and observed ra ap-
parent resistivity ratios. The apparent resistivity ratio was
calculated as the ratio of the analytic half-space models (9)
before and after movement

r =
ρ′

ρ

( 1
AM ′ −

1
BM ′ −

1
AN ′ −

1
BN ′

1
AM −

1
BM −

1
AN −

1
BN

)
(2)

for homogeneous resistivity ρ, electrodes spaced
AM,BM,AN,BN , and the updated locations and re-
sistivity after movement indicated by primed ′ variables.

? Leica System 1200 RTK GPS in “kinematic mode” real-time correction
achieves as much as 10 mm (Root Mean Squared (RMS)) horizontal and 20
mm vertical accuracies (Merritt 2014).
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Figure 4. Dipole-dipole measurement protocol for line#1; March 2008 measurements,(left) stimulus in red and measurements in blue, one row per difference
measurement, (middle) initial difference measurements Va (green) compared to homogeneous resistivity at 32.1 Ωm shown as Va−Vh (red), and the change
from initial to final measurements Vb − Va (blue), and (right) the reciprocal standard error as a percentage of the measurements estimated by comparing
reciprocal measurements for initial (green) and final (blue) measurements.
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Figure 5. Dipole-dipole measurement protocol for line#5; February 2013 and February 2014 measurements,(left) stimulus in red and measurements in blue,
one row per difference measurement, (middle) initial difference measurements Va (green) compared to homogeneous resistivity at 26.1 Ωm shown as Va−Vh
(red), and the change from initial to final measurements Vb−Va (blue), and (right) the reciprocal standard error as a percentage of the measurements estimated
by comparing reciprocal measurements for initial (green) and final (blue) measurements.
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Figure 6. [From Wilkinson et al. (2010), figure 2, x,z-coordinates cor-
rected:] 2-D resistivity image inverted from the baseline data set (2008
March). The inferred boundaries between the Whitby (WMF), Staithes
(SSF) and Redcar (RMF) formations are shown by dotted black lines. Strati-
graphic logs of boreholes are shown in grey scale. The main scarp and
slipped WMF material are indicated by the black arrows. [Reproduced from
Wilkinson et al. (2010), figure 2, for comparison with Fig. 11a in this work.
The RES2DINV reconstruction region, elsewhere in this paper referred to
as the “RES2DINV outline,” is selected by the software based on a heuristic
pseudo-section method (Loke 2017).]

Dipole-dipole data for measurements n = 1 were discarded,
as they were judged to be too dependent on transverse
movements which were not reconstructed.

A similar approach was applied (Wilkinson et al. 2016),
to reconstruct two-dimensional surface xy-movements for
the whole electrode grid by allowing for transverse move-
ments through an additional weighting term

arg min
∑
i

e2i + α
∑
j

||mj || + (3)

β
∑
j

θ(m
(y)
j )|m(y)

j |+ γ
∑
j

θ(m
(x)
j )|m(x)

j |

facilitating balancing the sensitivities of transversem(y)
j and

longitudinal m(x)
j movements by adjusting the weighting ra-

tio β/γ.

4 METHOD

While the work of Wilkinson et al. (2010, 2016), described
in the previous section, focused on a sequential inversion
procedure, here we simultaneously reconstruct resistivity
and electrode position in a Gauss-Newton iterative frame-
work. A two-dimensional model of the slope profile was
constructed with independent parameters for resistivity and
electrode position (Fig. 7). The `2-norm of the data discrep-
ancy and regularisation terms was minimised by balancing
the sensitivity of the resistivity parameters ρ and electrode
movement x against the regularisation terms

(ρ̂, x̂) = arg min
ρ,x
||F(ρ,x)−m||

W
+

||λβRρ log10(ρ?/ρ)||
2
+

||ληRx(x− x?)||
2

(4)

The optimal solution (ρ̂, x̂) minimises the data discrepancy
between a forward modelF and measurements m combined

with some regularisation Rρ and Rx acting to smooth an
otherwise ill-posed and ill-conditioned inverse problem. The
forward model was the parametrised 2.5D model (Fig. 7)
of resistivity ρ and longitudinal† electrode position x and
producing an estimate of expected measurements given the
measurement protocol. Measurement error was weighted W
based on estimates of measurement reliability. The regular-
isation terms penalised changes in resistivity and electrode
position from prior estimates (ρ?,x?). The relative sensitiv-
ity of the two types of parameters, resistivity and electrode
movement, were balanced by adjusting the ratio of the scalar
β/η. The overall strength of the regularisation was adjusted
by scaling both terms by λ. The resistivity was solved under
a positive conductivity σ constraint by converting to inverse
log units log10 σ = log10 1/ρ.

The objective function (4) was solved using the well
known iterative Gauss-Newton approach (Nocedal & Wright
1999 §10.2). The Gauss-Newton approach starts from an ini-
tial estimate (ρ0,x0), estimates the local slope of the objec-
tive function as the Jacobian (Jσ,Jx) to determine a new
search direction (δρ, δx), and then performs an approxi-
mate line search in that direction to estimate an optimal step
length α. At each iteration, the parameters were updated

(δρ, δx) = −(JTWJ + λ2Q)−1(JTWb + λ2Qc) (5)
(ρn+1,xn+1) = (ρn,xn) + α(δρ, δx) (6)

for b = F(ρn,xn)−m

c =

[
log10 1/ρn − log10 1/ρ?

xn − x?

]
=

[
log10 ρ?/ρn
xn − x?

]
J =

[ −1
ρn ln(10) Jσn

Jx

]
R =

[
βRρ 0

0 ηRx

]
and RTR = Q

based on the data discrepancy b and the distance from
the prior estimate c in combination with the regularisation
R, the slope of the objective function J and measurement
weighting W. This formulation agrees with that of Boyle
et al. (2017), but is modified to address a log resistivity
parametrisation. In contrast to a typical resistivity-only in-
version, the reconstruction parameters, Jacobian and regu-
larisation R have been extended to incorporate the new elec-
trode position parameters. The resistivity Jacobian has been
calculated for conductivity Jσn

and then scaled, which is
exactly equivalent to calculating the Jacobian on the log of
resistivity.

The movement Jacobian was found to be sensitive to re-
sistivity changes in the small elements adjacent to the elec-
trodes. To address this sensitivity, the log conductivity regu-
larisation combined a smoothing prior near electrodes with
Tikhonov regularisation away from the electrodes

Rρ = I + νRL (7)

ν = exp− |xe − x`|
|x̄``|

(8)

where the Laplace smoothing RL was scaled ν by the dis-
tance between each FEM element centre xe and the nearest

† Longitudinal movement being movement inline with the electrodes and
along the surface.
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Figure 7. The 2.5D forward model FEM parametrisation; right-to-left expanding from the region surrounding a single electrode, to the scale of the electrode
array, to the scale of the region surrounding the electrode array, the forward model is parametrised for electrode position x and resistivity ρ, resistive regions
selected to demonstrate mesh structure.

electrode x`, scaled by the average distance between elec-
trodes x̄``. This prior encourages small changes from the
expected resistivity in regions with little information. In re-
gions near the electrodes, changes will be pushed towards
the spaces between electrodes rather than directly under the
electrodes, as well as encouraging smooth transitions in re-
sistivity near the electrodes. The regularisation for move-
ment was the Tikhonov prior Rx = I. In principle, there are
correlated changes between resistivity and electrode move-
ment (Kim et al. 2014) which may be partially accounted for
by setting the off-diagonal blocks of the regularisation ma-
trix to non-zero values, but in practice these were not char-
acterised and in the absence of a better guess were set to
zero.

The forward model was constructed as a two-
dimensional cross-section based on the original electrode
locations and the mesh was then perturbed by PCHIP‡ in-
terpolation (Carlson & Fritsch 1989) for electrode displace-
ments. Forward modelled measurements and the Jacobians
were calculated using the 2.5D method (Dey & Morrison
1979).

We have made use of the log conductivity to restrict the
resistivity reconstruction to physically meaningful positive
values. Experiments with the log movement constraint, to
restrict electrodes to downslope movement, resulted in sim-
ilar reconstructions to the ones presented here which used
unrestricted electrode movement. For the log movement
parametrisation, the behaviour at each iteration was different
to an unscaled movement due to the structure of the move-
ments in this data set. Because each electrode that moved
had a different magnitude of movement, the log movement
reconstruction tended to solve for each electrode’s recon-
structed displacement separately: one electrode per iteration.
The apparent single electrode updates were actually an arte-
fact of the log scaling, where smaller movements were re-
duced by orders of magnitude, so as to be inconsequential.
Once the largest electrode placement error had been cor-
rected, the next largest error would be addressed. We feel
that this highlights the importance of careful selection of
the reconstruction parametrisation. It is possible that some
Fourier decomposition or other basis of electrode movement
with appropriate regularisation might achieve greater recon-
struction accuracy without artificially fixing any single elec-
trode’s location or degrees of freedom for movement.

‡ Matlab interp1(X,Y,Xq,‘pchip’) one-dimensional interpolant
based on Hermite derivatives.
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Figure 8. Jacobian sensitivity diag(JT
xJx)

1
2 on a sixteen electrode, ho-

mogeneous (σ = 1) half-space model; two-dimensional rank-one elec-
trode position Jacobian (Gómez-Laberge & Adler 2008) shows orders-of-
magnitude error in sensitivity estimate, while three-dimensional analytic (9)
and rank-one estimates (Gómez-Laberge & Adler 2008) are in close agree-
ment with the 2.5D (13) estimate.

5 2.5D POSITION JACOBIAN

The two-dimensional electrode position Jacobian suffers
from significant errors (Fig. 8), when compared to data from
a three-dimensional model, which makes it inappropriate for
three-dimensional problems. A three-dimensional electrode
position Jacobian becomes prohibitively expensive to cal-
culate as the mesh density grows. A 2.5D approach offers
a compromise by restricting sensitivity parametrisation and
electrode positions to the plane, while achieving high fidelity
to equivalent three-dimensional models, at a fixed multiple
of the two-dimensional computational effort.

Two alternate methods were evaluated before develop-
ing the 2.5D position Jacobian: a 2.5D perturbation method
which was relatively slow, and an analytic model of move-
ment which was restricted to a homogeneous resistivity and
the Point Electrode Model (PEM). Motivated by the short
comings of these two methods, we develop the 2.5D posi-
tion Jacobian which is efficient and accounts for resistivity
variation in the model using the CEM.

The perturbation method used the underlying 2.5D for-
ward simulations of the full FEM resistivity model using the
CEM. These movement perturbation calculations proved to
be prohibitively slow because a mesh perturbation resulted
in recalculations of the system matrices and a new inver-
sion of that system matrix. The cost grows with number of
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electrodes and movement dimensions, so that for n = 32
electrodes, estimated in d = 1 dimensions, nd + 1 forward
simulations were required at each iteration of the Gauss-
Newton inverse solution. A line search typically required
3 to 6 forward simulations, meaning that the perturbation
Jacobian required far more time to calculate than the rest
of each iteration. When FEM mesh density was increased
sufficiently to achieve good estimates of electrode position
changes, the calculations took an unreasonable amount of
time. Low mesh densities sped up the calculations but exhib-
ited significant errors when compared to a three-dimensional
perturbation solution at sufficient mesh density.

An alternate solution was implemented by adapting the
half-space analytic PEM forward model. For a half-space,
the potential difference V measured over a homogeneous re-
sistivity ρ with current I driven on the stimulus electrodes,
is given by

V =
ρI

2π

(
1

AM
− 1

BM
− 1

AN
+

1

BN

)
(9)

where each distance AM,BM,AN,BN is between a stim-
ulus electrode and a measurement electrode. The model may
be applied for any arbitrary pair-wise electrode placement. A
position Jacobian may be constructed by applying the elec-
trode movement perturbation. A next logical step would be
to take the derivative of (9) with respect to electrode posi-
tion and build up a solution specific approximate block-wise
model of resistivity away from electrodes (Wilkinson et al.
2010), though this was not implemented in this work. Elec-
trode positions were captured from the FEM model. A ho-
mogeneous resistivity was assigned based on the average re-
sistivity of the current FEM model. The electrode position
Jacobian produced by the half-space analytic perturbation
method was compared to the 2.5D perturbation Jacobian un-
der homogeneous conditions. Using the modified half-space
analytic perturbations was much faster to calculate than the
2.5D perturbation method and reasonably accurate: the ef-
fect of topography was found to be somewhat accounted
for. The loss of accuracy due to changing electrode models
(CEM to PEM) and using a homogeneous resistivity were
not so disruptive as to change signs in the position Jacobian
although magnitudes were inaccurate.

Motivated by the efficiency of the two-dimensional po-
sition Jacobian of Gómez-Laberge & Adler (2008), and the
errors introduced by using a two-dimensional electrode po-
sition Jacobian, the 2.5D position Jacobian was developed as
the corollary of the 2.5D conductivity Jacobian. In general,
the 2.5D forward solver is a well known technique and is
commonly used in geophysics ERT applications. An approx-
imately half-space geometry, and a resistivity that is nearly
uniform along one axis, fit well with a 2.5D model, and oc-
cur naturally in many geological settings. By adapting the
adjoint, or “standard method,” of calculating the conductiv-
ity Jacobian by a rank-one update, to the 2.5D technique,
resistivity may be efficiently reconstructed. To reconstruct
electrode movement, we desire a similar 2.5D implementa-
tion for the electrode position Jacobian. In the following, we
outline the 2.5D conductivity Jacobian and present a new
derivation for the 2.5D electrode position Jacobian. We use
the formulation of the two-dimensional conductivity Jaco-
bian from Boyle et al. (2017) as a basis for these develop-
ments.

The two-dimensional and 2.5D conductivity Jacobians
Jσ were calculated

Jσ,2D = −TA−1CTS
∂D

∂σn
CX (10)

Jσ,2.5D = − 2

π

∫
k

TA−1k CT(S + k2T)
∂D

∂σn
C
Xk

2
(11)

for measurement selection T , system matrix A, mesh con-
nectivity matrix C, mesh shape functions S, a conductivity
change ∂D/∂σn, and the nodal voltages X = A−1B for
stimulus B over an electrode modelled as a shunt in the y-
direction when the two-dimensional FEM is meshed over the
x–z plane. The system matrix A = CTSDC is assembled
from a connectivity matrix C mapping global node numbers
to element-local node numbers, the element shape functions
S and the conductivity D per element.

For the 2.5D position Jacobian, the system matrix Ak

is specific to the spatial frequency k, as are the nodal volt-
ages Xk = A−1k B. A perturbation node is selected at row u,
column v, affecting a linear interpolatory shape function E.
The 2.5D position Jacobian may be calculated as an exten-
sion of the two-dimensional Jacobian, in an analogous way
to (10), (11), as

Jx,2D = −TA−1CT ∂S

∂xn
DCX (12)

Jx,2.5D = − 2

π

∫
k

TA−1k CT ∂(S + k2T)

∂xn
DC

Xk

2
(13)

where the two-dimensional position Jacobian may be effi-
ciently calculated using the rank-one update for the conduc-
tivity Jacobian (Gómez-Laberge & Adler 2008) with some
new terms.

Again, based on the two-dimensional formulation from
Boyle et al. (2017), the element shape functions for element
(e) may be summarised as the element shape matrix

S(e) =
1

2|detE|
ET
\1E\1 (14)

for a shape matrix E and a row-reduced version E\1 where
the top row of the matrix is removed. The shape matrix is
distorted by having its nodes perturbed leading to the first-
order estimate of element deformation

∂S(e)

∂xn
=

1

2

(
∂|detE|−1

∂xn
ET
\1E\1 + (15)

1

|detE|

(
∂ET
\1

∂xn
E\1 + ET

\1
∂E\1

∂xn

))
where xn refers to a global node numbered n and affects all
elements e connected to that node. The local shape functions
of each element, for first-order interpolatory shape functions
on a two-dimensional mesh, are

E2D =

[
1 p1x p1y
1 p2x p2y
1 p3x p3y

]−1
(16)

p1

p2 p3

for a triangular element (blue) with three nodes p1, p2, p3.



10 A. Boyle, et al.

To calculate the partial derivatives of the first-order in-
terpolatory shape functions, we make use of the matrix de-
terminant lemma for an invertible square matrix H where

det(H + uvT) = det(H)(1 + vTH−1u) (17)

The update uses the rank-one perturbation vectors u and v,
selecting by row and column, to manipulate a single element
of the matrix, a node of our mesh, by a small perturbation. A
first-order approximation of the derivative of a determinant
via a rank-one perturbation is then

∂ det(H + uvT)

∂xn
= det(H) vTH−1u (18)

To evaluate the change in our shape function’s determi-
nant, we use the partial derivative of an absolute function
∂|H| = H∂H/|H| and the inverse determinant equivalence
det(H−1) = det(H)−1 so that

∂ |detE|−1

∂xn
=
∂ |det(E)−1|

∂xn
=
∂ |det(E−1)|

∂xn
(19)

=
det(E−1) ∂(detE−1)

∂xn

|det(E−1)|
(20)

and the partial derivative of the determinant

∂ det(E−1)

∂xn
= det(E−1) vTEu (21)

can be applied to (20) after reducing the determinants

det(E−1) det(E−1)

|det(E−1)|
=
|detE|
det(E)2

=
1

|detE|
(22)

so that

∂|detE|−1

∂xn
=

vTEu

|detE|
(23)

The partial derivative of the reduced shape matrix can
be approximated using the Sherman-Morrison formula

(H + uvT)−1 = H−1 − H−1uvTH−1

1 + vTH−1u
(24)

to get a rank-one update

∂E\1

∂xn
= −(EuvTE)\1 (25)

for a small perturbation such that vTEu� 1.
To go from a two-dimensional solution to a 2.5D so-

lution, a correction term k2T appears in the system matri-
ces so that the shape matrices S(e) are extended to become
S(e) + k2T(e) for spatial wave-number k.

T(e) =
1

2|detE|

[
2 1 1
1 2 1
1 1 2

]
1

12
(26)

For the 2.5D position Jacobian, this change adds a new par-
tial derivative term ∂T(e)/∂xn

∂S(e)

∂xn
→ ∂(S(e) + k2T(e))

∂xn
=
∂S(e)

∂xn
+ k2

∂T(e)

∂xn
(27)
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Figure 9. The 2.5D Jacobian calculations scale with FEM node count:
the 2.5D movement Jacobian speed advantage over a rank-one three-
dimensional calculation (Gómez-Laberge & Adler 2008) grows as mesh
density (FEM elements per metre) 1/h, where h is the maximum element
height for the entire mesh. Error bars show max/min run times over 20 runs,
the run time is closely related to the number of nodes in the FEM mesh
where two-dimensional meshes have far fewer nodes for the same mesh
density.

where ∂S(e)/∂xn is already available from the two-
dimensional calculations, and the additional term
∂T(e)/∂xn may be derived

∂T(e)

∂xn
=

1

2

∂|detE|−1

∂xn

[
2 1 1
1 2 1
1 1 2

]
1

12
(28)

but we already have ∂|detE|−1/∂xn from deriving the par-
tial derivatives of the S(e) term (23) giving

∂T(e)

∂xn
=

1

2

vTEu

|detE|

[
2 1 1
1 2 1
1 1 2

]
1

12
(29)

for a linear interpolatory shape function E perturbing a node
at row u and column v.

This adjoint or rank-one perturbation method for the
2.5D electrode position Jacobian may be calculated much
more quickly than a direct perturbation method because the
system matrices do not need to be recalculated and inverted
to determine the change in measurements due to electrode
movement.

The 2.5D electrode position Jacobian (13) was found to
be 25.9 times faster than the equivalent three-dimensional
rank-one update method (Gómez-Laberge & Adler 2008),
implementing (12) in three dimensions, for mesh geometries
used in this work (Intel Core i5-2500K 4-core processor at
3.30 GHz with 32 GB memory). Two-dimensional electrode
position Jacobian estimates differ significantly from three-
dimensional solutions (Fig. 8), so have not been presented
in Fig. 9. The computational cost of the two-dimensional
rank-one update method for calculating the electrode posi-
tion Jacobian (Gómez-Laberge & Adler 2008) was orders
of magnitude faster than a naı̈ve two-dimensional perturba-
tion method. The two-dimensional rank-one update was 7.1
times faster than the 2.5D method across most mesh sizes,



Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring 11

(a) line#1, March 2008

(b) line#5, February 2013

Figure 10. Inverse model parametrization with colours showing relative sensitivity S = diag(JT
σWJσ)/V as S/max(S) for homogeneous resistivity;

(a) line#1 March 2008, and (b) line#5 February 2013; note the distinct difference in slope profile between (a) and (b).

which is accounted for by the numerical integration implied
by (13). There are likely to be further gains from optimiz-
ing this implementation for multiple processing cores be-
cause key portions of the Jacobian calculation (14) (15) (26)
(29) can be performed in parallel and the Jacobian typically
consumes a significant portion of the total calculation time
in each Gauss-Newton iteration (Boyle et al. 2012b). Mesh
density was measured as the inverse of the maximum ele-
ment height h (elements per metre) for both two- and three-
dimensional meshes. The relative speed-up for a particular
mesh density 1/h grows as a function of the number of FEM
mesh nodes n and elements which must be calculated in
the Jacobian where n = O(h−2) in two dimensions and
n = O(h−3) in three dimensions; the larger the mesh the
greater the benefit conferred by the 2.5D Jacobian approach.

6 RESULTS

The column `2-norm sensitivity (the diagonal of JTJ) was
plotted by replacing reconstructed resistivity with the log of
estimated sensitivity. Sensitivity in these plots was expected
to be greatest near the electrodes and diminish elsewhere.
Simple Dirichlet boundary conditions away from the elec-
trodes, used in these simulations, introduced errors, which
were observable as variations in sensitivity at unexpected lo-
cations. We wished to model an approximately half-space
forward model but unexpected increases in sensitivity near
the sides and bottom were found to be caused by the bound-
ary conditions which were deflecting current flow. Bound-

ary condition errors can be corrected in a number of ways,
the simplest of which is to increase the modelled domain
until the error is small enough. One could, alternatively,
implement appropriate “infinite elements” at the boundary
(Babus̆ka 1972). Another method is to estimate a “primary”
field for each stimulus using an analytic half-space model
or very detailed one-time-use FEM mesh, and then calculate
a “secondary” field update on a smaller FEM with different
resistivity as a correction (Günther et al. 2006). The primary-
secondary type methods rely on small changes in resistivity
far enough from the boundary to leave the “primary” field
largely unperturbed and it is not immediately obvious how
this method may be affected by electrode movements or sur-
face deformation without recalculating the primary field at
each update. Neumann and mixed boundary conditions away
from the electrodes were not considered. We have used an
expanded model, in the interests of reliable results under de-
formed boundaries, at the expense of some lost computa-
tional efficiencies. Regions of high sensitivity were initially
noted at depth where little sensitivity was expected. To de-
termine how far the FEM model boundaries needed to be
extended, an analytic PEM half-space model was compared
to CEM homogeneous resistivity FEM simulated measure-
ments. The model boundaries were extended approximately
one electrode array length in each of the +x,−x and −z
directions. The boundary extension reduced boundary con-
dition related errors in simulated measurements to within
measured noise levels and removed the artefacts from the
sensitivity plots.

The resistivity sensitivity S was plotted relative to the
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(a) line#1, March 2008 (b) line#1, April 2009

(c) line#5, February 2013 (d) line#5, February 2014

Figure 11. Resistivity-only reconstructions using true electrode positions as measured by RTK GPS; (a) line#1 March 2008 to (b) April 2009 (λ = 52.1, σ0 =
31.3 Ωm), and (c) line#5 February 2013 to (d) February 2014 (λ = 42.7, σ0 = 25.6 Ωm).

maximum sensitivity,

S = diag(JT
σWJσ)/V (30)

using the conductivity Jacobian Jσ , measurement inverse
covariance/weighting W, and element volumes V, for
line#1 (March 2008) and line#5 (February 2013) using the
surveyed locations (Fig. 10). The region near the electrodes
has been presented with annotations matching Fig. 6, as well
as an image of the complete model. The initial and final re-
sistivities were independently reconstructed using the sur-
veyed locations (Fig. 11) and the difference between ini-
tial and final was used to create the expected resistivity
change (Fig. 12e,f). The initial resistivity for line#1 closely
matched those published in (Wilkinson et al. 2010) (Fig. 6)
and achieved a similar <1% RMS measurement misfit rel-
ative to a homogeneous resistivity model. Qualitatively and
quantitatively, the two reconstructions (Fig. 6 and Fig. 11a)
are very similar.

Electrode movements were initially reconstructed with-
out allowing resistivity change using an independent imple-
mentation of the electrode movement iterative solver. The
observed behaviour of the algorithm (Fig. 13) was to first
minimise the error in the electrode spacing (corresponding
to the largest measurement misfit), and then to approach a
more “correct” solution. Artefacts of this approach to the
minimum over the optimization surface remain where large
steps in the true electrode movement are reconstructed as
a balanced step by adjacent electrodes that comes close to
the true displacement between electrodes near that move-
ment. The joint inversion code was checked against this

result by setting the movement-resistivity balance parame-
ter β to strongly favour electrode movement. Reconstruc-
tions showed no resistivity change and movements that were
in close agreement with the movement-only reconstruction
code. Small variations still existed between the two re-
sults due to differences in the Gauss-Newton implementa-
tion and inexact line search. These variations were small
with respect to the overall electrode movement solution.
When electrode movements were reconstructed with resis-
tivity changes (Fig. 12), some portion of the reconstructed
electrode movement was lost in favour of reconstructed re-
sistivity change.

Due to the large electrode movements, it was found
helpful to perform a crude version of successive relaxation.
The first three iterations of the Gauss-Newton reconstruction
were performed with an electrode movement hyperparame-
ter that was an order of magnitude larger than following iter-
ations. Without this adaptation, the reconstructed electrode
movements showed poor agreement with measured loca-
tions, presumably because the Gauss-Newton iterations were
trapped in a local minimum which favoured constructing re-
sistivity artefacts near the electrodes. Exploring the space of
hyperparameters near the selected hyperparameter did not
reveal one which achieved better electrode movement recon-
struction.
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(a) line#1, reconstructed resistivity change (b) line#1, resistivity change using true electrode positions
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(c) reconstructed longitudinal movements for line#1
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(d) true movements for line#1

(e) line#5, reconstructed resistivity change (f) line#5, resistivity change using true electrode positions
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(g) reconstructed longitudinal movements for line#5
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(h) true movements for line#5

Figure 12. Change in resistivity and electrode movement for joint movement reconstructions (λσ = 0.1, λx = 0.07), (a,b,c,d) line#1, March 2008 to April
2009, and (e,f,g,h) line#5, February 2013 to February 2014.

7 DISCUSSION

Resistivity was reconstructed for measured initial and final
electrode locations (Fig. 11) which serve as an “ideal” re-
construction. Resistivity and electrode displacement were si-
multaneously reconstructed for a survey located on a slowly
moving landslide. Results exhibit some measure of oscilla-

tory artefacts in the reconstructed movement (Fig. 12c and
Fig. 12g).

The resistivity distribution for line#1 (March 2008 –
April 2009; Fig. 11a,b) changed by a relatively small amount
when using true electrode locations before and after move-
ment. This would suggest that, beyond the ground motion at
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Figure 13. Electrode movement without allowing for resistivity changes, iterations for (a) line#1, March 2008 to April 2009, and (b) line#5 movement,
February 2013 to February 2014.

the surface, no structural changes in the near surface seem to
have occurred. It seems plausible that the increased area of
low resistivity WMF might be indicative of increased satu-
ration of the soil which led to the translational slide of WMF
material moving over SSF substrate at the surface.

The resistivity changes for line#5 (February 2013 –
February 2014; Fig. 11c,d), show a significantly different
distribution after ground movement, which is interesting
given that the two electrode lines are within 40 m of each
other. The line#5 measurements (Fig. 11d) occurred after a
very wet summer and winter period where there was a lot of
seepage at the base of the lobe causing the deeper reductions
in resistivity between z = 40 and 60 m. At the surface of the
lobes, resistivity increased due to cracking of the top layer.
A cracked surface experienced accelerated evaporation over
increased surface area, resulting in localised resistivity in-
crease. To a lesser extent, areas affected by surface cracking
also showed increased resistivity due to the change in topog-
raphy: relatively little current would be conducted across the
air gap in cracks, contributing to an average increase in bulk
conductivity, but the cracks do increase the surface along
which current flows resulting in an effective increase in re-
sistivity. We take particular note of the change in SSF resis-
tivity around x = 80 m which may have developed vertical
connectivity between the overlying WMF and RMF below,
allowing vertical drainage. The flow would be from the sat-
urated WMF, along the WMF-SSF boundary to the surface,
then to a region of vertical connectivity downward through
the SSF (x = 80 m), and then into the RMF where it has
pooled underground. This proposed flow path might also ex-
plain the increase in resistivity in the SSF at x = 60 m: if
the vertical connectivity were in a roughly vertical plane, it
would cut off the outer section of the SSF and that outer
section would drain downwards into the RMF leading to
an increase in resistivity. The deeper segment of the SSF
(x > 80 m) would maintain its resistivity because the gen-
eral connectivity and saturation have not changed by much.
The resistivity change may also be induced by model error
in electrode placement or topography: the 2.5D model limits

fidelity in some respects. The poor quality of the line#5 post-
movement data, as measured by reciprocal error, may be the
cause of these changes, though the locations of the reciprocal
errors along the electrode array were distributed along the
length of the array so that we expect no concentrated region
of low sensitivity that could cause resistivity changes in the
reconstruction such as those observed Fig. 11d. Given this
speculation, it would be interesting to investigate this poten-
tial vertical fault in the SSF. Perhaps it is an indication of
a major ground movement, still to come, as the lower slope
drainage has changed significantly. The change in drainage
may also help to stabilise the lower slope by providing a
drainage path at-depth which will allow surface material in
the SSF to consolidate. This stabilising effect has been ob-
served on other nearby slopes in previous years. It has been
postulated in Uhlemann et al. (2017) that reactivation of the
slope at line#1 was stabilised due to slope movement which
caused preferential flow paths to open, lowering pore pres-
sures on the slip surface of the lobe, thereby stabilising the
lobe.

For a half-space model with a homogeneous resistivity,
electrode positions are not unique. A translation of the entire
set of electrodes will give identical measurements. Likewise,
a scaling of all electrode positions is equivalent to a change
in the homogeneous resistivity. When conductivities are in-
homogeneous the electrode locations are somewhat fixed
by the locations of the inhomogeneities. Examples of elec-
trode position non-uniqueness manifested itself in this data
as large oscillations in the reconstructed electrode movement
when no measures were taken to address the issue.

Fixing the location of three electrodes at the upslope
and downslope ends of the electrode array (Fig. 12c and
Fig. 12g) nearly eliminated these oscillations. As seen in the
line#5 data, this is not necessarily a correct assumption, as
both the top and bottom of a landslide may move, leading to
resistivity artefacts. We infer that fixing these electrode lo-
cations was sufficient to damp the reconstructed movement’s
oscillations because it fixes the relationship between a stim-
ulus current, a measured voltage, and electrode separation
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(distance). Smoothing-type regularisation of resistivity, used
in this work, then controls how strictly the selected scaling
of electrode separation is enforced. For example, electrodes
that have contracted together in a region might cause a con-
ductive artefact to be reconstructed under those electrodes.
Increasing the resistivity regularisation may suppress these
artefacts and cause movement to be reconstructed by con-
tracting the local electrode spacing to account for smaller
than expected voltage measurements in the region.

Both unscaled and log scaled electrode movement were
tested and found to give results with similar absolute posi-
tional error. We have elected to present the unscaled elec-
trode movement in our reconstructions as it is a less restric-
tive choice. One could imagine low angle slopes, wetlands
or floodplains where the expected direction of movement
would not be known a priori. Peat wetlands, muskeg, and
most ground exposed to deep frost experience seasonal ex-
pansion and contraction, due to freeze-thaw cycles, water ta-
ble changes, or water and gas accumulation and evaporation,
which can result in uplift and ground shifting in directions
other than downslope (Taber 1930; Hansell et al. 1983; Price
2003; Strack et al. 2006; Uhlemann et al. 2016c). A fur-
ther reason to avoid dependence on the log movement scal-
ing is the extension of this work to transverse movements
where the restriction to movements only to one side of the
array seems inappropriate. In the data sets examined here,
there are transverse movements which were caused by ma-
terial accumulating at the toe of the landslide and towards
the edges of the earth flow. These transverse movements can
be predicted for this particular data set based on the pre-
existing topology: line#1 electrodes moved east, downhill
into a gully, while the line#5 electrodes moved west, down-
hill into the same gully.

Reconstructions for line#1 generally matched the true
electrode locations within 0.20 m for movements of up to
1.46 m with the exception of electrode #9 and the three elec-
trodes #6–#8 at the step in electrode position (Fig. 12a).
Compared to Wilkinson et al. (2010) (≤ 0.2 m position er-
ror), these results are marginally less accurate. It seems prob-
able that our results for the line#1 data differ from those
of Wilkinson et al. (2010) due to the simultaneous resis-
tivity and electrode position reconstruction, presented here,
which removes artificial ordering constraints that occur with
the sequential method of Wilkinson et al. (2010). Another
source of differences in our results with respect to Wilkin-
son et al. (2010) is the restriction to downslope movements
by a log parametrisation in Wilkinson et al. (2010). As men-
tioned previously, trials of this log parametrisation method
in our simultaneous resistivity and electrode position inver-
sion did not lead to improved results. Our results for the
line#5 data appear to closely correlate with Wilkinson et al.
(2016), where reconstructed electrode locations were gener-
ally within 0.2 m excepting some electrodes with errors up
to 1.0 m, though results are not presented in as much de-
tail in that case. In contrast to Wilkinson et al. (2016), our
reconstructions do not address movements transverse to the
electrode line.

Movement reconstructions for line #5 do not appear to
be particularly accurate, perhaps due to the more significant
resistivity changes inferred in the reconstruction and more
widespread translational failure of the slope which shifted
electrodes over most of the resistivity structure (Fig. 12g).

These might be addressed by identifying the covariance be-
tween movement and resistivity change within the joint re-
construction algorithm regularisation. It is also possible that
some of the error in reconstructed electrode position may
be due to the FEM discretization. An approach such as the
Fréchet method for electrode movement may help to allevi-
ate such issues, though in general it produces the same solu-
tions as a three-dimensional rank-one update method (Dardé
et al. 2012; Boyle et al. 2017). Adjusting the relationship
between resistivity and movement regularisation β caused
greater electrode displacement error as resistivity regularisa-
tion was reduced. These movement magnitudes represented
movement of up to 32% of the average 4.73 m electrode
spacing, exceeding the joint resistivity-movement methods
of Soleimani et al. (2006) which was limited to movements
of approximately 1% of electrode spacing.

8 CONCLUSION

This work demonstrated the practical application of a joint
electrode movement-resistivity reconstruction using an iter-
ative Gauss-Newton regularised solver. The electrode posi-
tion Jacobian was calculated on the current resistivity at each
iteration. Reconstructions show reasonable agreement with
RTK GPS measured electrode locations, available resistivity
estimates and geological structure.

The initial reconstructed resistivity model, used as a
starting point for the electrode movement and resistivity
reconstruction, was in close agreement with prior work
(Fig. 6 and Fig. 11a) (Wilkinson et al. 2010). Reconstructed
changes in resistivity (Fig. 12) showed considerable varia-
tion, particularly around the region at the toe of the landslide.
These changes in resistivity could be indicative of water sat-
uration changes due to water seepage at the toe of the land-
slide or other geological causes. Another possibility is that
the resistivity changes represent artefacts due to transverse
and normal components of electrode movement which were
not accounted for in these reconstructions.

We note that, in general, even when electrode displace-
ments were not entirely accurate compared to true electrode
positions, the error in the estimated and true distances be-
tween electrode positions was quite accurate after one or
two Gauss-Newton iterations. Errors in electrode spacing
were distributed fairly evenly across the electrode array, after
which the displacements shifted towards their true positions
in most cases. This suggests that a parametrisation for elec-
trode movement that encompasses electrode spacing may
lead to improved outcomes. The results suggest that elec-
trode grids are effective not only for resistivity monitoring,
but also as a means of ground motion detection which may
provide a cost-effective approach for landslide monitoring.

We are encouraged by these results and expect that
with new protocols which measure between electrode lines,
higher quality electrode position reconstructions will be pos-
sible which incorporate normal, lateral, and transverse elec-
trode movements, as observed in the data sets presented here.
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Pfeiler, S., Lovisolo, M., Gruber, S., & Vecchiotti, F., 2014. Geoelec-
trical monitoring: an innovative method to supplement landslide surveil-
lance and early warning, Near Surface Geophysics, 12(1), 133–150.

Suzuki, K. & Higashi, S., 2001. Groundwater flow after heavy rain in
landslide-slope area from 2-D inversion of resistivity monitoring data,
Geophysics, 66(3), 733–743.

Taber, S., 1930. The mechanics of frost heaving, The Journal of Geology,
38(4), 303–317.

Uhlemann, S., Hagedorn, S., Dashwood, B., Maurer, H., Gunn, D., Di-
jkstra, T., & Chambers, J., 2016a. Landslide characterization using P-
and S-wave seismic refraction tomography — the importance of elastic
moduli, Journal of Applied Geophysics, 134(1), 64–76.

Uhlemann, S., Smith, A., Chambers, J., Dixon, N., Dijkstra, T., Meldrum,

P., Merritt, A., Gunn, D., & Mackay, J., 2016b. Assessment of ground-
based monitoring techniques applied to landslide investigations, Geo-
morphology, 253(1), 438–451.

Uhlemann, S., Sorensen, J., House, A., Wilkinson, P., Roberts, C.,
Gooddy, D., Binley, A., & Chambers, J., 2016c. Integrated time-lapse
geoelectrical imaging of wetland hydrological processes, Water Re-
sources Research, 52(3), 1607–1625.

Uhlemann, S., Chambers, J., Wilkinson, P., Maurer, H., Merritt, A., Mel-
drum, P., Kuras, O., Gunn, D., Smith, A., & Dijkstra, T., 2017. 4D imag-
ing of moisture dynamics during landslide reactivation, Journal of Geo-
physical Research: Earth Surface, 122(1), 398–418.
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