Propagation of Measurement Noise into Images

Alistair Boyle, Symon Stowe, Sreeraman Rajan, Andy Adler Carleton University, Ottawa, Canada ETT2019, July 1-3, 2019

We Choose One Image

Single step Gauss-Newton reconstruction

$\mathbf{X} = (\mathbf{J}^{\mathsf{T}} \mathbf{W} \mathbf{J} + \lambda^2 \mathbf{R})^{-1} \mathbf{J}^{\mathsf{T}} \mathbf{W} \mathbf{b}$

x: change in conductivity; **b**: difference measurements; **J**: Jacobian; **W**: inverse noise covariance;
λ: hyperparameter; **R**: regularization

Single step Gauss-Newton reconstruction

$\bm{x} = \bm{Q}\bm{b}$

x: change in conductivity; **b**: difference measurements; $\mathbf{Q} = (\mathbf{J}^{\mathsf{T}}\mathbf{W}\mathbf{J} + \lambda^{2}\mathbf{R})^{-1}\mathbf{J}^{\mathsf{T}}\mathbf{W}$: reconstruction matrix

Noise is Reconstructed

$\mathbf{x} = \mathbf{Q}(\mathbf{b} + \eta)$

x: change in conductivity; **b**: difference measurements; **Q**: reconstruction matrix;

η : noise

Additive noise, but of no particular distribution.

Noise is Reconstructed

$\mathbf{x} = \mathbf{Q}\mathbf{b} + \mathbf{Q}\eta$

x: change in conductivity; **b**: difference measurements; **Q**: reconstruction matrix;

 η : noise

Sample from the noise distribution, whether normal or otherwise, and linearly combine with other measurement noise samples using **Q**.

These are *sums of random variables* (not a mixture distribution). If we have $\mu = 0$ (captured in **b**) then we can combine them as a *sum of weighted variances*.

$$\mathcal{CX}_1 \sim \mathcal{N}(\mathcal{C}\mu, \mathcal{C}^2\sigma^2); \ \ \mathbf{X}_1 + \mathbf{X}_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
 for indep $\mathbf{x}_{1, \mathbf{X}_2}$

Use a row of **Q** to scale and add measurement distributions into a conductivity distribution/uncertainty on a single voxel of **x**.

Central Limit and Bootstrap

Empirical methods for estimating image noise are *bootstrap* or *leave one out*.

Estimates of the mean are guaranteed to approach a Gaussian distribution, with sufficient sampling, due to the *Central Limit Theorem*.

...but we can also just calculate the distribution directly, given our linear reconstruction matrix \mathbf{Q} and a parametric noise distribution η when they're available.

SIMULATIONS

Simulation

- 2D, 16 electrodes, time difference **b**
- **v** observe distribution of 1 voxel
- measurement noise $\eta \sim \mathcal{N}(0, \mathbf{c}/10)$ for $\mathbf{c} = \operatorname{var}(\mathbf{b})$
- • electrode#10 noise $\eta_{10} \sim \mathcal{N}(0, \mathbf{c})$
- removed stimulus or measurements using electrode#k

OBSERVATIONS

What can we observe?

- λ_{GCV} tests leaving out a single measurement...doesn't help here
- drop large variance measurements...
- offers a method for efficient calculation of simulated noisy images
- regularization suppresses the effect of measurement variance

