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WeChooseOne Image
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Measurements are Reconstructed

Single step Gauss-Newton reconstruction

x = (JTWJ+ λ2R)−1JTWb

x: change in conductivity; b: difference measurements;
J: Jacobian;W: inverse noise covariance;
λ: hyperparameter; R: regularization
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Measurements are Reconstructed

Single step Gauss-Newton reconstruction

x = Qb

x: change in conductivity; b: difference measurements;
Q = (JTWJ+ λ2R)−1JTW: reconstruction matrix
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Noise is Reconstructed

x = Q(b+ η)

x: change in conductivity; b: difference measurements;
Q: reconstruction matrix;

η: noise

Additive noise, but of no particular distribution.
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Noise is Reconstructed

x = Qb+Qη

x: change in conductivity; b: difference measurements;
Q: reconstruction matrix;

η: noise
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Noise is not Normal
but if it was…

Sample from the noise distribution, whether
normal or otherwise, and linearly combine
with other measurement noise samples
using Q.
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Noise is not Normal
but if it was…

These are sums of random variables (not a mixture
distribution). If we have µ = 0 (captured in b) then we
can combine them as a sum of weighted variances.
cx1 ∼ N (cµ, c2σ2); x1 + x2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2) for indep x1, x2

Use a row of Q to scale and add measurement
distributions into a conductivity
distribution/uncertainty on a single voxel of x.
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Central Limit and Bootstrap

Empirical methods for estimating image
noise are bootstrap or leave one out.

Estimates of the mean are guaranteed to
approach a Gaussian distribution, with
sufficient sampling, due to the Central Limit
Theorem.
…but we can also just calculate the
distribution directly, given our linear
reconstruction matrix Q and a parametric
noise distribution η when they’re available.
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SIMULATIONS



Simulation

• 2D, 16 electrodes, time
difference b

• observe distribution of 1
voxel

• measurement noise
η ∼ N (0, c/10) for c = var(b)

• electrode#10
noise η10 ∼ N (0, c)

• removed stimulus or
measurements using
electrode#k
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OBSERVATIONS



What can we observe?

• λGCV tests leaving out a single measurement…doesn’t help here

• drop large variance measurements…

• offers a method for efficient calculation of simulated noisy images

• regularization suppresses the effect of measurement variance
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