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We aim to improve the understanding and clinical
management of Canadian Forces service members
and veterans suffering concussion, complex pain,
and PTSD using machine learning techniques on
data collected from virtual reality treatment ses-
sions at The Ottawa Hospital Rehab Centre.

Strategy and Features
At this point in the study the available data are limited: there are few patients and their time under treatment tends to be short. To make the most of this
biometric data, we extract features reflecting typical biomechanical measures of stability (Centre of Pressure) using force plate data, heart rate variability
and breathing rate from ECG, and approximate joint angles from 3D motion capture. These data form a time series which are used as inputs for machine
learning. With more data available, it may be possible to perform machine learning directly on input data without extensive feature extraction.
The clinician observations, actively collected during patient treatment, are used to identify regions of elevated SAANS response. These regions are used
in training a neural network to identify symptoms of elevated SAANS response in the biometric data.
With a trained predictor of SAANS response, biometric data can be processed in a computational pipeline and fed to the predictor to provide a delayed
online predictor of SAANS response without clinician intervention.

Introduction
Mild traumatic brain injury (concussion), complex pain, and post-
traumatic stress disorder (PTSD) are associated with heightened sym-
pathetic activation of the autonomic nervous system (SAANS, “fight or
flight response”). In Canadian Forces members and veterans, these con-
ditions often occur as a triad (polytrauma), posing clinical challenges in
their treatment and management. At The Ottawa Hospital Rehabilitation
Centre, a key technique for treatment employs a Computer Assisted Reha-
bilitation Environment (CAREN) facility; allowing patients to experience
motion and interact with a virtual environment.
Treatment occurs under the direct supervision of the treating clinician and
requires a high degree of experience and training to achieve appropriate
patient exposure. Our study aims to capture, analyze and eventually pro-
vide “live” feedback to clinicians on patients’ SAANS response through
minimally intrusive capture and analysis of biometric data that are not
typically recorded, using machine learning techniques and cloud comput-
ing resources.

Methodology
Patients are currently being recruited with a target of 60 patients over
the 2 year study. Heart rate, breathing, and movement (acceleration) are
captured from the Zephyr Biopatch HP (Medtronic). Time series for 3D
motion capture (VICON), force plates under the treadmills, and the con-
figuration of the simulated environment, CAREN hardware and D-Flow
software (MotekForce Link), are stored for each session. Clinicians use a
tablet-based custom app to record their observations of SAANS signs and
symptoms, administer the simulator sickness questionnaire (SSQ), and
record comments and common events, all time- stamped and uploaded to
the cloud servers (SOSCIP/IBM).
Study clinicians collect data from 3–6 activities lasting 15–300s (typical)
over each 1h treatment session. Data are processed to compute features,
largely focused on measures of variability. These features are used to
(a) develop patient-specific models of pre-treatment baseline, and (b) to
capture deviations from these patient-specific models during treatment
and report the patient state to the clinician.

Results
Patient recruitment and healthy volunteer data collection are underway. Cloud resources (SOSCIP, https://saans.ca) are online and under
continuous development. Analysis of the available data and neural network performance against our clinician “gold standard” is ongoing.

Conclusion
We expect that development of these data-based, observational techniques will be an important tool in training new clinicians, and improving patient
outcomes by rapidly and consistently identifying changes in patient SAANS signs and symptoms to clinicians. This information may enable early
reporting of over or under treatment and offers additional opportunities for dynamically tailored patient-specific therapy.

We gratefully acknowledge our partners: CIMVHR, Mitacs, IBM, and SOSCIP.
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Quick Facts
Control Subjects 8 ✓
Patients 5 of 60
Study End Date July 2020

Stimulus Clinician Treatment
CAREN VR

Biometric Data ECG, Force Plates heart rate, breathing
3D Motion Capture movement, balance

Observations Tablet SSQ, signs & symptoms
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Figure 1: Biometric data collected during treatment is processed on cloud servers where machine learning is used to predict SAANS response. The predicted
SAANS response can eventually be used to improve patient care by better targeting the ideal treatment zone. The predictor may also be used to support clinician training
in detecting patient’s SAANS response.
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Figure 2: Processed biometric data: ECG to Heart Rate Variability, force plates to Centre of Pressure, and markers to “skeleton” motion.
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