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Abstract— Baseline performance for 3D joint centre
trajectory classification using a number of traditional machine
learning techniques are presented. This framework supports
a robust comparison between classifier architectures over
a 416 subject dataset of athletes (professional, college, and
amateur) from five primary sports and six non-primary sports
performing thirteen non-sport specific movements. A variety
of deep neural networks specifically intended for time-series
data are currently being evaluated.

Clinical/sports relevance— Patient and athlete movement
patterns can be measured by 3D motion capture and evalu-
ated by systematically using machine learning. By providing
a distributable “expert”, issues with inter- and intra-rater
variability may be reduced. This work explores a variety of
machine learning techniques to evaluate which methods are
most appropriate for motion capture data.

I. INTRODUCTION

Movement screens are a set of non-sport specific move-
ments that are typically evaluated by human observers to
classify athletes and identify training deficiencies [1]–[3].
One example is the Functional Movement Screen (FMSTM,
Functional Movement Systems, USA). There are known
issues with inter- and intra-rater reliability in commonly used
movement screening techniques [4]–[8].

Three-dimensional (3D) motion capture technology uses
markers applied to an athlete and a number of cameras
to capture a 3D time-series of a subject’s movement at
resolutions under 2 mm for dynamic movements [9], [10].
Preprocessing of the 3D marker time-series allows labelling
of markers based on relative (approximate) positions. With a
cleaned set of marker trajectories, the labelled markers can
then be used to construct frames of reference for each limb
or body segment. A calibrated anatomical system technique
(CAST) was used to find dynamic joint centres by placing
additional markers on anatomical landmarks and then using
regression to estimate joint centres based on the original
marker placement (without the extra markers on anatomical
landmarks) throughout dynamic movements [11], [12]. This
processing produces joint centre locations in 3D over time.
Marker trajectories or joint centres can be stored in the C3D
data format alongside sampled analog data such as force plate
measurements.

Recent work by Ross et al. [13] used 3D joint centre
trajectory data to classify athletes into elite and novice
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levels1. We use the same dataset in this work. Ross et al.
used principal component analysis (PCA) followed by linear
discriminant analysis (LDA) trained for each of the thirteen
movements. However, the most appropriate deep neural net-
work architecture for 3D marker or joint centre trajectories
is unclear.

Many types of image classification problems have bene-
fited from the development of convolutional neural networks
(CNN) [14], a technique which scans a picture for two-
dimensional patterns in each of the three red-green-blue
(RGB) colour channels and merges the results to perform
classification or prediction tasks. The efficiency of the CNN
comes from training small filters which are scanned across
the whole image. This approach implies that a feature should
be consistent across different regions of the image. The
results are mixed and pooled to achieve a blending across
colour channels and at different scales. Research into the
classification of activities of daily living (ADL) have made
use of “colouring” data by assigning accelerometer xyz data
streams to the red-green-blue (RGB) channels and formatting
data as small RGB images of rectangular shape [15]–[17].
This structuring of the data enables the use of image-based
CNN architectures followed by recurrent neural networks
such as the long short term memory (LSTM) network [18] to
classify successive chunks of a time-series. The placement of
adjacent time-series rows in the image implies a relationship
between adjacent time-series that may not be appropriate.
Some classification results suggest that three measurements
are “optimal,” but we note that this is the limit beyond which
ordering of time-series rows becomes critical to maintaining
structural relationships, for example the relationship between
the hip, knee, and ankle on each leg. One could order
the rows by left side, then right side with the hips in the
middle rows to maintain ordered structure but adding a torso
introduces an ordering problem that requires more than one-
dimension. We speculate that clever ordering or repetition
may overcome these structural limitations. On the other hand,
new architectures may be required to make the most of our
data, rather than reusing general purpose image classifiers.

Recently, Fawaz et al. [19] have evaluated a number
of deep neural network architectures on univariate and
multivariate time-series data. Our time-series data is more
structured than general multivariate time-series data. For joint
centre or marker data, the specific relationships between the
three spatial axes and the highly correlated and structured

1In this work, Ross et al. ’s “elite” corresponds to our “professional” and
“college” combined, and their “novice” corresponds to our “amateur.”



TABLE I
CLASSIFIERS

Acronym Classifier

MLP Multi-Layer Perceptron
FCN Fully Convolutional Neural Network

TCNN Time Convolutional Neural Network
Resnet Residual Network

Encoder Auto-Encoder
SVM Support Vector Machine
LDA Linear Discriminant Analysis

PCA+X Principle Component Analysis followed by . . .X
Naive Naı̈ve Baseline (majority class)

nature of the relationships between joints suggest that it
should be possible to provide this prior information to
a neural network. There is no existing architecture that
bridges this gap. We have implemented variations of the
best performing architectures from [19] (fully convolutional
network, time convolutional neural network, auto-encoder).
A convolutional neural network structure commonly used
in image recognition (residual network) was also included.
These techniques were compared to general machine learn-
ing techniques using principal component analysis, support
vector machines, and linear discriminate analysis. A multi-
layer perceptron and naı̈ve (select the largest class) classifier
round out the alternatives. (Classifiers and their acronyms
are listed in Tab. I.)

For this work, we define the best performing classifier as
the architecture which achieves the greatest median accuracy
across movement tasks. We also consider classifier training
time and the quantity of trainable parameters, ultimately
looking for a promising classifier that avoids over/under
fitting.

II. METHODS

Athletes from a range of sports had 45 markers applied
which were tracked at 120 Hz (Raptor-E, Motion Analysis,
Santa Rosa, USA) during the performance of thirteen dy-
namic movements that challenge balance and stability. Data
were collected from 416 athletes by Motus Global (Rockville
Centre, New York). Athletes from basketball, baseball, soc-
cer, golf, football and other sports (track and field, tennis,
lacrosse, cricket, volleyball, squash) were recorded. Subjects
were approximately balanced between professional sports
(MBA, MLB, NFL, PGA, FIFA), college, and amateur. A
summary of the athletes is available in Tab. II. Prior to data
collection, participants read and signed consent forms per-
mitting future use of the data for research. The University of
Ottawa Research Ethics Board (Ottawa, Canada) approved2

the secondary use of the data. Data were preprocessed by
gap-filling (Cortex, Motion Analysis, Rohnert Park, USA)
and a whole-body kinematic model (Visual3D, C-Motion
Inc., Germantown, USA) was used to produce joint centre
trajectories from the gap-filled marker data. The results of
preprocessing were 32 trajectories in xyz for each athlete.

2Ethics file number H-08-18-1085.

TABLE II
DATASET SUMMARY — MOVEMENT SCREENED ATHLETES

n Type Categories

416 Subjects
13 Movements See Tab. III
3 Levels Professional/Pro (148),

College (119),
Amateur (149)

7+ Sports Basketball (59+54+14=127),
Baseball (61+3+13=77),
Golf (1+3+56=60),
Soccer (13+18+28=59),
Football (2+31+16=49),
Other (12+8+24=44)
[Track & Field (9+2+3=14),
Tennis (3+3+10=16),
Lacrosse (0+3+4=7),
Cricket (0+0+1=1),
Volleyball (0+0+1=1),
Squash (0+0+1=1),
un-reported (0+0+4=4)]

20.4± 4.3 Mean Age Professional: 23.4± 3.7;
College: 21.1± 1.9;
Amateur: 16.8± 3.7

6.2:1.0 Gender M:F Male (143+110+105=358),
Female (5+7+46=58),
other/un-reported (0)

subject counts by sport and gender are listed as
(pro + college + amateur = total)

TABLE III
MOVEMENTS

# Athletes

Acronym Activity Left Right

DJ Drop Jump — 275
BDL, BDR Bird Dog Left, Right 381 387
HDL, HDR Hop Down Left, Right 401 400
LHL, LHR L-Hop Left, Right 268 267

LL, LR Lunge Left, Right 400 401
SDL, SDR Step Down Left, Right 399 403
TBL, TBR T-Balance Left, Right 392 395

Athletes with at least one “good” movement 416
Athletes with all thirteen movements 200

Trajectories included the head (4), spine at T2 and T8 (2),
pelvis anterior and posterior mid-points (2), sternum (1),
trunk centre of gravity (1), proximal and distal ends for
upper and lower arm (8), proximal and distal ends for upper
and lower leg segments (8), and feet (6). Collectively, we
refer to these 32 trajectories as the “joint centre trajectories“
in this work. Selected movements were cropped from the
time-series, and low-pass 4th-order Butterworth zero-phase
filtered (fc=15 Hz). Each movement was normalized by
linear interpolation to the median number of frames across
athletes. Athletes were allowed to repeat movements until
they were satisfied with their performance. We used only
the “best” self-reported attempt for each movement.

Ten types of classifiers were trained to predict either the
level of the athlete or their sport. The same data were used
for predicting level or sport. PCA was the only feature
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Fig. 1. Data flow (left-to-right) from motion capture, through preprocessing, classifier training and testing (with 8-fold cross-validation for classifier
tuning), and analysis of the results grouped by movement.

selection used, after preliminary attempts with some wrapper
and filter methods were inconclusive. Not all participants had
high quality data captured across all movements: only 200
athletes had a complete set of the thirteen movements. The
total number of athletes available for each movement varied
from 267 (L-hop right) to 403 (step down right) (Tab. III).
To avoid discarding much of our data, each movement was
used separately, leading to thirteen trained classifiers for
each predictor (level or sport), over ten classifiers: in total,
260 classifiers were evaluated. Classifier performance was
grouped by movement so that each classifier was ranked
based on its overall median accuracy across all thirteen
movements. The analysis of classifier performance for pre-
dicting sport and level were performed separately using the
same criteria.

Ten classifiers were compared (Tab. I). Bold text has
been used to identify labels used in tables and figures. A
baseline naı̈ve classifier (selecting the majority class) set a
minimum performance threshold (Naive). Classifiers using
Support Vector Machines (SVM), and Linear Discriminant
Analysis (LDA) were compared to classifiers using Principle
Component Analysis (PCA) for preprocessing (PCA+SVM
and PCA+LDA). Deep neural networks (DNNs) are cur-
rently being tuned, and preliminary results are reported
here. A Multi-Layer Perceptron (MLP) was compared to
the leading techniques from Fawaz et al. [19] on multi-
variate classification. These classifiers included the Fully
Convolutional Network (FCN), Time Convolutional Neural
Network (TCNN), residual network (Resnet), and auto-
encoder (Encoder). Details of these DNN architectures for
time-series data can be found in [19].

Each classifier was trained independently on a single type
of movement to predict either the athlete’s sport or level. (See
Tab. III for a list of the 13 movements. Fig. 1 summarizes
the classification workflow.) For each movement, the data
were separated into an 80:20 train:test split. The training data
were used in an 8-fold cross-validation grid search to tune
classifier configuration parameters such as LDA shrinkage

and MLP hidden layers. A single set of configuration param-
eters were selected for each classifier across all movements
and predictors. This set of configuration parameters was
used with the same training data to recalculate an 8-fold
cross-validated estimate of expected accuracy by bootstrap
confidence bounds. The training data were already used for
tuning so that the estimate was biased and likely to over
estimate performance. Finally, all the training data were used
together to train a finalized classifier for each movement and
evaluated on the testing data. Results were recorded and
analysis of performance across the classifiers, movements,
and predictors was carried out.

We have reported median accuracy in these results. Ac-
curacies for each movement were plotted in the violin
plots (Fig. 2, Fig. 3) as white dots. Confusion matrices for
the top performing classifier have been provided for each
movement. Variability in the accuracy across movements for
all classifiers within 5% of the top performing classifier were
shown in bar charts.

The Resnet, MLP, FCN, TCNN, and Encoder classifiers
have not yet been tuned using the cross-validation grid
search.

III. RESULTS

The results for classification by level and by sport are
summarized next.

As expected, the un-tuned deep neural networks generally
performed poorly. The tuning of these networks continues.

A. Classification by Level

Predicting the level of an athlete (pro, college, amateur)
shows SVM as the best classifier with a median accuracy of
64.15% (Fig. 2, violin plots). The PCA+SVM, LDA, Resnet,
PCA+LDA, and MLP classifiers are within 5% of the leading
classifier. The naı̈ve classifier which selects the largest class
had a median accuracy of 37%, as expected for a roughly
balanced three class problem. The best classification rate was
nearly double this naı̈ve classification rate. The PCA+SVM



Fig. 2. Classification by level; (top) violin plots show per movement classification accuracy (white dots) ordered by median accuracy for each classifier;
the number of parameters and training time for each classifier are shownin log-scaled bar charts with 95% confidence intervals; (middle) confusion matrices
for the top classifier (best median accuracy) are presented; (bottom) bar charts for the classification accuracy of each movement over all classifiers within
5% of the top classifier show that some movements are classified more successfully than others.

and SVM perform to nearly the same accuracy because
after a grid search, the PCA keeps 99.99% of the explained
variance (approximately 150 principal components from ap-
proximately 500 data frames) so that almost all the infor-
mation was retained in a slightly compressed form. SVM
performance increased markedly when using shrinkage, at
the cost of considerably extended runtimes. Interestingly,
PCA+SVM has significantly more trainable parameters, but
because of the efficient singular value decomposition used in
PCA, training was very quick. Accuracy for the classifiers
was fairly uniform across movements (Fig. 2, bar chart),
varying by approximately 5–10%, with the exception of
the un-tuned residual network classifier, which we expect
to improve after further refinement. The confusion matrices
(Fig. 2, confusion matrices) illustrate that identifying amateur
level athletes was generally not difficult using any single
movement except for bird dog left (BDL) and step down left
(SDL). In addition, we can observe that some movements
such as bird dog left and T-balance right (BDL, TBR) better
identify college versus professional athletes.

B. Classification by Sport

For the prediction of sport, our results show that
PCA+SVM was the best classifier with 58.75% median accu-
racy (Fig. 3, violin plots). The best classifier performed much
better than the naı̈ve classifier which had a median accuracy
of 30.00%. There was more class imbalance in the sport clas-
sification than in the level classification explaining the greater
median naı̈ve accuracy on this six class problem (nominally
16.67% for a balanced 6-class problem). The PCA+SVM,
PCA+LDA, MLP, and SVM all have approximately the same
performance with PCA+LDA being the fastest to train and
SVM having the smallest number of trainable parameters.
LDA performance was low without shrinkage: we are in the
process of testing LDA with shrinkage which is likely to
boost the LDA classifier accuracy. The confusion matrices
(Fig. 3, confusion matrices) show that classifying basketball
players was quite successful across all movements. Accuracy
across movements (Fig. 3, bar chart) varies by approximately
10% between movements.



Fig. 3. Classification by sport; (top) violin plots show per movement classification accuracy (white dots) ordered by median accuracy for each classifier;
the number of parameters and training time for each classifier are shownin log-scaled bar charts with 95% confidence intervals; (middle) confusion matrices
for the top classifier (best median accuracy) are presented; (bottom) bar charts for the classification accuracy of each movement over all classifiers within
5% of the top classifier show that some movements are classified more successfully than others.



IV. DISCUSSION

In predicting athlete level and sport, classifier performance
varies between movements. The confusion matrices illustrate
that this performance is not uniform across classes. This
presents the opportunity to leverage this information to con-
struct an ensemble classifier which may be more successful
at separating the groups (pro, college, and amateur; baseball,
basketball, football, golf, soccer, and other).

Predicting the level of an athlete (pro, college, amateur)
appears to be a fairly linear task (Fig. 2), where the linear
LDA, SVM, and PCA+SVM classify at roughly the same
accuracy. PCA+SVM gives very similar results to SVM since
the tuned PCA parameters give best performance at 99.99%
of explained variance, the greatest explained variance ratio
tested to date.

The prediction of sport shows promising preliminary re-
sults (Fig. 3). Basketball players’ movement patterns appear
to be quite distinct. Surprisingly, golf, for which the majority
of the class are amateur athletes, is relatively identifiable.
College and amateur athletes were left in the data sets,
though these athletes have almost certainly not specialized as
much as a professional would have. We speculate that using
the professional athletes for classifier training or providing
additional groupings for cross-trained and untrained athletes
may lead to more consistent results.

Feature selection may improve these results, though DNNs
are likely to benefit less than the SVM/LDA-based classifiers.
The automated feature selectors we used required the data
to be “flattened” into a two-dimensional array which hides
xyz joint centre groupings in the trajectories. This blindness
to higher level relationships between joint centre locations at
each time interval resulted in comprehensive feature selection
methods that experienced a combinatorial explosion in the
number of possible features that were to be tested, making
them impractical. Random search methods plateaued after
removing approximately one third of the features and did
not measurably improve overall classifier performance. Our
preliminary attempts at automated grouped feature selection
by dropping joint centres were inconclusive. With classifiers
that are now better tuned, it is possible that feature selection
by joint centre will be more successful in the future.

V. CONCLUSIONS

A framework for comparison of classifier performance on
joint centre trajectory datasets was presented. Preliminary
results showing traditional machine learning classification
performance on two types of classification problems were
illustrated. Tuning of the more complex deep neural network
architectures is on-going.
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