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Abstract. Objective: Electrical Impedance Tomography (EIT) typically reconstructs
individual images from electrical voltage measurements at pairs of electrodes due to
current driven through other electrode pairs on a body. EIT images have low spatial
resolution, but excellent temporal resolution. There are four methods for integrating
temporal data into an EIT reconstruction: filtering over measurements, filtering over
images, combined spatial and temporal (spatio-temporal) regularization, and Kalman
filtering. These spatio-temporal methods have not been directly compared, making
it difficult to evaluate relative performance and choose an appropriate method for
particular use cases.

Approach: We (1) develop a common framework, (2) develop comparison metrics,
(3) perform simulation and tank studies which directly compare algorithms, and (4)
report on relative advantages of the different algorithms.

Main Results: Temporal filtering is well understood, but often not considered
as part of the imaging process despite a direct impact on image reconstruction
quality. Spatio-temporal regularized techniques are not yet efficient but offer
tantalizing advantages. Kalman filtering enables adaptive filtering for time-varying
measurement/image noise at the cost of often over-regularized (sub-optimal) images
which can now be understood in the same framework as the other techniques. Further
research into efficient implementations of Gauss-Newton spatio-temporal regularization
will allow temporal and spatial covariance to be explicitly defined for longer time
series (n > 10 frames) where temporal regularization can be more effective. For
the immediate analysis of temporally varying images, we recommend the use of
adaptive (time-varying) temporal filtering of measurements followed by adaptive
spatial regularization (hyperparameter selection) as the most computationally efficient
and effective approach currently available.

Significance: The analysis of variation within regions of an EIT image to extract
physiological measures (functional imaging), has become an important EIT technique
where temporal and spatial aspects of analysis are tightly integrated. This work gives
guidance on available methods and suggests directions for future research.

Keywords: Electrical Impedance Tomography (EIT), Electrical Resistivity Tomography
(ERT), spatio-temporal, Kalman filters, digital filters, image filtering, Gauss-Newton,
inverse problems, performance evaluation, image quality
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1. Introduction

Spatio-temporal refer to those items “belonging to both space and time” (Stevenson
and Waite 2011). The spatial qualities of an image are often considered paramount,
though sequences of images are frequently used to select a representative moment. Close
interactions exist between the temporal and spatial changes in a signal measured by an
instrument. Longer temporal capture periods can be used to improve measured signal
quality and an image’s spatial resolution at the risk of blurring fast changing images.
Suitable time series measurement data enable a systematic investigation of the exchange
between spatial and temporal qualities of an image when the reconstruction method
allows explicit, even regional, spatio-temporal choices.

Electrical Impedance Tomography (EIT) is a biomedical technique where low
frequency electrical stimulus current is applied to surface electrodes and the resulting
voltage distribution is measured at other electrode locations. Electrical Resistivity
Tomography (ERT) is the same mathematical problem with geophysical applications.
The stimulus and measurements are repeated many times at a comprehensive set
of electrode locations, forming a “frame” of data used to reconstruct the interior
conductivity. Many frames of data may be collected while monitoring a system for
interesting changes: some biomedical EIT instruments can collect data at 100 frames
per second, while geophysics ERT instruments typically collect data at lower frame
rates (for example, one frame per day over many years) due to using many more
electrodes and lower stimulus frequencies. In either case, large sets of time-series data
are collected. These datasets capture changes in both spatial and temporal dimensions:
three-dimensional changes in conductivity, boundary shape, and contact impedance
over time (Boyle and Adler 2011). Most modern reconstruction algorithms for EIT
use regularization, with a penalty to impose spatial smoothness. Many publications
focus on the spatial characteristics of images at particular time points (Boone and
Holder 1996, Friedel 2003, Grychtol et al 2012, Crabb et al 2014, Mewes et al
2017) including a growing array of techniques focused on functional imaging (Adler

and Boyle 2017, and references there-in). Multiple frames of data may be reconstructed
together and have regularization (smoothness) applied across them, leading to spatio-
temporal regularization. Spatio-temporal reconstruction can be formulated as

(a) combining spatio-temporal regularization via an augmented Gauss-Newton
reconstruction matrix (Adler et al 2007, Boyle 2017, Adler and Aristovich 2018),

(b) as a Kalman-based smoother (Vauhkonen et al 1998),
(c) filtering images: image reconstruction, followed by filtering over images, or
(d) filtering measurements: filtering over measurements, then image reconstruction

(Yerworth and Bayford 2013).

Measurements are often filtered by averaging data frames (either at acquisition, or
post-hoc) to improve Signal-to-Noise (SNR) which smears regions of rapidly changing
conductivity. Images are sometimes filtered after reconstruction, though this is often
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Figure 1: Four methods for spatio-temporal regularization are examined: spatio-
temporal regularized Gauss-Newton, Kalman filter, filtering images and filtering
measurements

perceived negatively as a manipulation of the resulting images. The alternatives,
Kalman filtering and spatio-temporal Gauss-Newton methods, are algorithmically more
complex and computationally demanding. On the other hand, these alternatives
afford the opportunity to make better, even “optimal,” use of available data.
We consider image reconstruction methods using spatio-temporal regularized Gauss-
Newton, Kalman filter, filtering images and filtering measurements (Fig. 1). How are
these spatio-temporal methods related and when is each method appropriate?

These methods have not been directly compared, making it difficult to evaluate
relative performance and choose an appropriate method for particular use cases.
We (1) develop a common framework, (2) develop comparison metrics, (3) perform
simulation and tank studies which directly compare algorithms, and (4) report on
relative advantages of the different algorithms. We reformulate each of these methods in
a common Kronecker product-based notation to illustrate their similarities and introduce
conceptual tools to understand their performance. Despite initial appearances, we find
these methods to be closely related. To evaluate the performance of these approaches,
we simulate under a range of SNR conditions with stationary and non-stationary models
(Fig. 2). Stationary simulations using filtering illustrate that an optimal balance
between spatial regularization and temporal filtering exists (Fig. 4). This optimal
balance is restricted in the non-stationary case by the rate of conductivity change.
We reflect on the strengths and weaknesses of each technique to understand when each
method is best employed and present some sample observations (Fig. 5, Fig. 6, Fig. 7).
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2. Gauss-Newton on single frames

Gauss-Newton methods are generally used to reconstruct a conductivity image for a
single frame of data (Holder 2005, Adler and Boyle 2017). Regularized EIT image
reconstruction seeks an optimum image x to minimize the norm

argmin
x̂

‖y −F(x)‖Σ−1
η

+ ‖x∗ − x‖Σ−1
x

(1)

for data y, and a forward model F which generates an estimate of the data based on the
image x. Measurement noise is assumed Gaussian Ση ∼ N (0, ση) = W−1, and image
noise is also assumed Gaussian Σx ∼ N (0, σx) = R−1 centred at a prior image estimate
x∗. The Gauss-Newton iterative update (GN-update) for a single frame of data, solving
(1), is

δxk = (JT
kWJk + λ2R)−1

(
JT
kWyk + λ2R(x∗ − xk−1)

)
xk = xk−1 + αn δxk (2)

Updated parameters xk are calculated using results from the previous iteration xk−1

and a prior estimate x∗. The Jacobian Jk is calculated at each iteration using the
forward model with parameters xk−1. The measurements misfit y = ya − F(xk−1) is
the difference between the measurements ya and simulated measurements, using the
forward model F and most recent estimate of the parameters xk−1. The misfit yk is
weighted by an inverse noise covariance matrix W, and the reconstruction is regularized
by the image’s inverse covariance R with a hyperparameter λ controlling regularization
strength. At each step δxk, a line search may be executed to find the best scaling αk,
or for sufficiently linear problems the line search may be skipped (αk = 1). The initial
guess x0 is usually taken to be the prior estimate x∗ = x0.

Spatial regularization is often expressed in terms of Tikhonov regularization R = I

which suppresses large image values, or the Laplacian discrete smoother as a first- or
second-order difference operator across adjacent voxels in two or three dimensions.

For time difference EIT, the true change in conductivity x̂δ = xb −xa is a function
of the measurement misfit, which is the difference in measurements yδ = yb−ya between
two times a and b, where

y∆,k = (yb − ya)− (F(xb,k−1)−F(xa,k−1)) = yδ − (F(xa + x∆,k−1)−F(xa))

δx∆,k = (JT
kWJk + λ2R)−1

(
JT
kWy∆,k + λ2R(x∗ − x∆,k−1)

)
x∆,k = x∆,k−1 + αk δx∆,k (3)

and after a number of iterations k, the solution x∆,k should converge near the true
solution x̂δ. For small changes in conductivity, it is usually sufficient to use (3)
for a single-step, rather than in an iterative solution. A single-step with no line
search (αk = 1) considerably simplifies the update when x∗ = x∆,0 = 0 (assume
no change in conductivity), which gives y∆ = yδ and reduces (3) to a single linear
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(spatially regularized) reconstruction matrix Qs for conductivity change xδ = (JTWJ+

λ2R)−1JTWyδ so that

x = Qsy for y = yδ and x = xδ (4)

where the forward model F no longer plays a direct role in the reconstruction: the effect
of modelling errors are significantly reduced. The Jacobian J is usually calculated based
on an estimated (and often homogeneous) conductivity, for example x0 = 1. We focus
on difference imaging (x∗ = 0) in the following simulations.

3. Gauss-Newton over multiple frames

The original optimization problem (1) can be extended to express an expanded
reconstruction for optimum images x̃ which minimize the norm

argmin
ˆ̃x

‖ỹ −F(x̃)‖Σ̃−1
η

+ ‖x̃∗ − x̃‖Σ̃−1
x

(5)

with the inverse measurement Σ̃−1
η and image Σ̃−1

x covariances now endowed with
information about inter-frame, as well as the original intra-frame, correlations.
Mathematically, there are many choices for how to represent these covariances; in this
work we have selected the Kronecker product (Loan 2000) as a useful rhetorical device
which reduces cleanly (and exactly) to the original single frame imaging problem when
inter-frame correlations are ignored. The conceptual framework of a covariance amongst
frames and within frames enables complex relationships to be expressed: for example,
the cyclical, regional variations of the heart or variations in measurement noise over
time, though these opportunities are not explored further in this paper.

For many frames of data, the images can be reconstructed independent of temporal
relationships as

X = QsY for X =
[
x1 x2 · · · xn

]
, Y =

[
y1 y2 · · · yn

]
(6)

when the n measurement frames are arranged as columns in matrix Y with a column
vector of p measurements yi = [yi,1, yi,2, · · · yi,p]T for each measurement frame i.
Similarly, the conductivity images are arranged in a matrix X with a column vector
of q voxel conductivities xi = [xi,1, xi,2, · · ·xi,q]

T for each measurement frame i. The first
image x1 corresponds to the first frame of data y1.

The vectorization operator vec() stacks columns of a matrix converting a matrix
to a column vector, and the Kronecker product ⊗ resizes the reconstruction matrix to
agree

x̃ = vec(X) =


x1

x2

...
xn

 ỹ = vec(Y) =


y1

y2

...
yn

 I⊗Qs =


Qs 0

0 Qs

. . . 0

0 Qs


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x̃ = (I⊗Qs)ỹ = (I⊗ JTWJ+ I⊗ λ2R)−1(I⊗ JTW)ỹ (7)

When we assume intra-frame measurement and image covariance to be stationary,
Σ̃−1

η = Υ⊗W and Σ̃−1
x = Γ⊗R, for constant forward model and Jacobian Jk → I⊗Jk.

Our estimate of measurement noise Σ−1
η = W and choice of spatial regularization

Σ−1
x = R have inverse covariances Υ and Γ respectively across frames. By expansion

from (2), the spatio-temporal Gauss-Newton solution (Adler et al 2007, Dai et al 2008)
takes the form

δx̃k = ((I⊗ JT
k )(Υ⊗W)(I⊗ Jk) + (Γ⊗ I)(I⊗ λ2R))−1(

(I⊗ JT
k )(Υ⊗W) ỹ + (Γ⊗ I)(I⊗ λ2R) (x̃∗ − x̃k−1)

)
(8)

by applying the Kronecker identity (A⊗B)(C⊗D) = (AC⊗BD) to collect terms

δx̃k = (Υ⊗ JT
kWJk + Γ⊗ λ2R)−1

(
Υ⊗ JT

kWỹ + Γ⊗ λ2R (x̃∗ − x̃k−1)
)

x̃k = x̃k−1 + (αk ⊗ I) δx̃k (9)

which will result in very large sparse matrices with dense blocks matching the non-
zero entries of Υ for Υ ⊗ JT

kWJk and a large sparse matrix for Γ ⊗ R which leads
to a large dense matrix inverse (Cholesky or LU decomposition). The Wiener filter
form, as suggested in (Dai et al 2008), will be a better choice when there are fewer
measurements per frame than image voxels, though it still results in similar large dense
matrices when handling many frames. As a result, direct implementations over many
frames are exceptionally inefficient, often limiting this approach to fewer than 10 frames.

As before with difference imaging (4), we can considerably simplify (9) with
x̃∗ = x̃k = 0 and αk = 1, to arrive at the difference imaging single-step Gauss-Newton
update (1-step GN-update) with spatio-temporal regularization

x̃ = (Υ⊗ JTWJ+ Γ⊗ λ2R)−1(Υ⊗ JTW)ỹ (10)

In this work, we reconstruct difference images assuming stationary uncorrelated noise
Υ = I.

The application of electrical resistivity tomography (ERT) to geophysics problems
is mathematically the same problem as EIT: similar algorithms are often employed. A
number of spatio-temporal approaches in the geophysics literature have made use of
additional terms in the minimization argminx ‖ỹ − F(x̃)‖22 + ‖Lsx̃‖22 + ‖Ltx̃‖22 (Kim
et al 2009, Kim et al 2010, Hayley et al 2011, Loke et al 2014). Structuring
additional regularization in this form is equivalent to constructing a tall regularization
matrix L = [Ls Lt]

T so that ‖Lsx̃‖22 + ‖Ltx̃‖22 = ‖Lx̃‖22 (Hansen 2010). The temporal
regularization Lt introduced in these ERT approaches is uniform between frames and
reduces to our Kronecker expansion (10). In summary, similar techniques have been
studied in the geophysics setting over a few frames of data (n < 4).

Naïve implementations will be expensive to compute as the number of frames grows,
and rapidly run out of storage. Are there approaches that can achieve similar outcomes
efficiently?
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4. Kalman filtering

Using Kalman filtering, one can build a similar formulation for spatially regularized EIT
image reconstruction (Vauhkonen et al 1998). The Kalman model is

xk = Axk−1 +w prediction model
yk = Jkxk + n observation model (11)

where w is state noise, A is the state transition matrix and n is measurement noise.
For Kalman time-difference EIT image reconstruction, the current image xk is based on
the previous image xk−1 (x0 = 0), and new measurements yk at each iteration k

x−
k = Axk−1 +Buk−1 state estimate
xk = x−

k +Kk(yk − Jkx
−
k ) state

C−
k = AĈk−1A

T +P error covariance estimate
Kk = C−

k J
T
k (JkC

−
k J

T
k +V)−1 Kalman gain

Ĉk = (I−KkJk)C
−
k error covariance (12)

where P = R−1 is image covariance, Kk is the Kalman gain, calculated from the error
covariance estimate C−

k having an initial value Ĉ0 = 0, V = λ2W−1 is the measurement
noise covariance, and we don’t know the input (assume u = 0) so the control model B
is moot.

Smoothing the state-space, rather than filtering measurements, leads to the idea
of Kalman inter-frame temporal regularization as a “fixed-lag smoother” (Moore 1973).
Kalman methods have been used in the past to account for intra-frame measurement
delays in EIT (Kim et al 2001, Kim et al 2006), and changing conductivity for known
interior boundaries (Kim et al 2004).

In general for offline state estimation, the Rauch-Tung-Striebel fixed interval
smoother provides an optimal estimate using all measurements in the interval (Rauch
et al 1965). The smoother takes a sequence of states produced from the Kalman filter
in a forward pass and runs them through a correction on a backward pass to adjust the
state rather than only using measurements in the past. The backward pass is computed

x̃k = xk +Hk(x̃k+1 − x−
k+1) for Hk = ĈkA

T(C−
k+1)

−1

C̃k = Ĉk +Hk(C̃k+1 −C−
k+1) (13)

to give spatially and temporally smoothed image reconstruction.

5. Filtering over measurements or images

Many frames of data are sometimes averaged together to produce a single image
to improve measurement SNR and thereby reduce artifacts in the resulting image.
Windowing is often used to modify the finite impulse response filter characteristics
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and avoid frequency aliasing in discrete time systems by weighting samples for digital
signal processing (Lyons 2011). One can choose to produce multiple images by “sliding”
a window function across the data frames. The result is then sometimes “decimated”
to produce frames at a reduced frame-rate or at relevant instants. One can use this
technique to interpolate between frames, allowing alignment of (interpolated) frames
to gating signals such as a heartbeat (Ross 2010). Averaging the data Y by using a
rectangular window Γ−T

x̄ , or filtering using an exponential window Γ−T
γ , using a single-

step reconstruction Qs can be written

x̄ = QsYΓ−T
x̄ for Γ−T

x̄,i =
1

n
(14)

X = QsYΓ−T
γ for Γ−T

γ,i,j =
γ|i−j|∑
j γ

|i−j| ; 0 < γ ≤ 1

with filter Γ−T
x̄ (a column vector) or Γ−T

γ,i,j (a dense matrix) over n frames, with
measurement frame i and image frame j. Averaging is a special case of the exponential
filter with γ = 1 and in such a case all image frames will be identical.

For the exponential filter, a value for γ can be selected based on sampling and cutoff
frequencies using the z-transform. The discrete exponential filter can be calculated based
on a 3 dB cutoff frequency fc (Hz) using the instrument frame rate fs (Hz) as

γ = 2− cos(ω)−
√
cos2(ω)− 4 cos(ω) + 3 (15)

for frequency ω = 2π fc
fs

. Noise is reduced as (1−γ)/(1+γ) or approximately (1−γ)/2 as
γ → 1 (Lyons 2011, §11.6.1) and, in fact, very little filtering occurs until γ approaches
one because the effective width of the filter n is small (n < 10) until γ > 0.999.

In some EIT instruments, the measurements are taken sequentially about
the circumference on a single-ring electrode belt. The sequential delay between
measurements in a single frame can result in apparent phase differences between left
and right lung filling. Corrections for this delay which estimate the signal as if all
measurements had been instantaneous, can be implemented though an FFT-based phase
correction or a predictive filter (Yerworth and Bayford 2013). This intra-frame filter F−1

(filtered measurements within each frame) can be combined with inter-frame filtering
Γ−T (filtering across frames), as

X = QsF
−1YΓ−T (16)

though for most of this work we ignore the intra-frame filter and set F = I.

6. Simulations and Tank Measurements

Each of the four spatio-temporal methods was simulated at a variety of SNR and with
varying temporal and spatial filtering/regularization. Measured tank data (32-electrode
Swisstom Pioneer Set EIT system; Swisstom AG, Switzerland) was also collected and
reconstructed.
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stationary non-stationary

Figure 2: (above) Simulations: 32-electrode 3D tank model containing conductive
and insulating targets; non-stationary model targets rotating clockwise; (below)
Tank Measurements: 32-electrode Swisstom Pioneer Set EIT system (Swisstom
AG, Switzerland; configured for 47.68 frames/sec, 195 kHz 3 mA stimulation, skip-4
stimulation) and saline tank (CSEM, Switzerland; salinity adjusted to an average 257Ω
electrode impedance) with resistive plastic targets.

A three-dimensional tank forward model (EIDORS ng_mk_cyl_models, radius
r = 1m, 267,325 elements, 55,309 nodes) with a single ring of 32 electrodes was
simulated at a background conductivity of 1 S/m (Fig. 2). Two inclusions were inserted,
a conductive (1.10 S/m, 0.1 m diameter) and resistive (0.91 S/m, 0.2 m diameter) object.
For the non-stationary model, the objects were rotated around the centre of the model
at 1000 measurement frames per clockwise rotation (f/fs = 10−3). Both stationary
and non-stationary models were used to generate 256,000 frames with Additive White
Gaussian Noise (AWGN) at eight SNR (5–40 dB) relative to the measured signal prior
to calculating difference measurements. The difference measurements represented at
most 0.63% of the individual measurements (high common mode signal content). Noise
was high-pass filtered (6th-order Butterworth) fc/fs > 2 × 10−3 and mixed (added)
to broadband AWGN noise at a ratio of 90% filtered to 10% broadband noise. This
mixed noise was important to demonstrate the different performance between spatial
f/fs = 10−3 and temporal noise filtering in the following simulations.

Difference images were reconstructed on a “dual model” using a three-dimensional
forward tank model (fwd: 229,905 elements, 47,317 nodes) projected onto a two-
dimensional reconstruction model (rec: 1658 elements, 924 nodes). Stimulus and
measurement sequences for simulations were configured to match tank measurements:
a skip-4 sequence dropping all measurements which saturate the hardware (>1.5mV)
and any measurements within 2 electrodes of the stimulus electrode, leaving 640 of 928
possible measurements.

Using the models for stationary and non-stationary conditions, simulations at
each SNR and range of temporal cut-off frequencies (10−6 < fc/fs < 10−1) were
evaluated for each of the four reconstruction methods: spatio-temporal Gauss-Newton,
Kalman filtering, filtering measurements, and filtering images (§III–V). Gauss-Newton
reconstructions used single-step difference imaging (x∗ = x0 = 0). Spatial Tikhonov
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regularization R = I was used with a hyperparameter λ selected via Generalized
Cross Validation (GCV) (Hansen 2010). An appropriate λ was selected heuristically
for the small subset of cases where GCV failed. The resulting image was compared
to an expected image, the forward model. The difference between expected xa

and reconstructed xb images was quantified using a voxel volume corrected Artifact
Amplitude Measure (AAM) as

AAM =

√√√√∑
i

vi

(
xa,i

max |xa|+ ε
− xb,i

max |xb|+ ε

)2

(17)

for the i-th voxel volume vi, so that very similar images have low AAM. A small ε = 10−9

was supplied to manage situations where the regularization λ becomes overly strong and
results in a zero or near zero image. Differences in amplitude between the images were
ignored: these are expected when filtering and regularization are performed on a linear
one-step reconstruction.

We considered the GREIT consensus “performance figures of merit:” amplitude
response, position error, resolution, shape deformation, ringing, and noise figure (Adler
et al 2009). These measures use the quarter-amplitude response of the reconstruction
compared to a single ideal target to evaluate the performance of a reconstruction
algorithm over the imaged area. Noise figure, a measure of how measurement noise is
amplified in the reconstruction, was recommended by the GREIT authors for selecting
the spatial hyperparameter λ, where we have elected to use GCV for this purpose
with satisfactory results. In our initial tests using the GREIT metrics, movement
artifacts were jointly captured by amplitude response, position error, resolution, shape
deformation, and ringing. All five types of artifacts tend to occur simultaneously as
movement artifacts reach a critical threshold. We did not see a noticeable benefit in
breaking out the different types of image artifacts. (Sample plots for the GREIT figures
of merit have been supplied in Appendix A.) In this work, we have elected to use AAM
as a generalized summary statistic which accurately captures the artifacts observed in
our images.

7. Results

We explored proxies for AAM which might allow an optimal selection of temporal
filtering γ when the “true” image is not know (Fig. 3). Changes in the relative norm of
the conductivity ‖x‖ or the data misfit ‖Jx − b‖ may be a way forward. Correlation
scatter plots showed no reliable global replacement for AAM.

The variation of AAM and GCV-selected spatial regularization λGCV with temporal
filtering fc/fs for reconstruction of filtered measurements is plotted in Fig. 4. Some
illustrative sample reconstructions using stationary and non-stationary simulation data
and measured tank data, are shown in Fig. 5 (25 dB SNR), Fig. 6 (40 dB SNR), and
Fig. 7 (tank data). (Red dots on Fig. 4 indicate samples presented in Fig. 5a–f. Blue
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dots indicate samples presented in Fig. 6b–f.) An AAM > 7.0 tended to indicate images
that were no longer recognizably similar to the expected image.

For stationary simulations, more temporal filtering reduced artifacts and the
need for spatial regularization which in turn improved spatial resolution (Fig. 5abc)
(reducing fc/fs reduced λGCV). As expected, there is a noticeable drop in λGCV around
2× 10−3 < f/fs < 10−3 for stationary reconstructions where temporal filtering removes
90% of the measurement noise; the high-pass filtered AWGN noise. This drop is
less reliably present in non-stationary reconstructions. We observed the GCV criteria
occasionally fail in a well understood way (Hansen 2010) by under-regularizing images
such as Fig. 6a particularly under very low SNR conditions.

Non-stationary images experienced similar improvements when compared to the
stationary reconstructions in spatial resolution and AAM up to the limit of the rate of
movement (f/fs = 10−3). Beyond this movement threshold the spatial regularization
selected by GCV continued to fall, as with the stationary case, but images became
significantly distorted due to smearing of the moving targets (reflected in an increasing
AAM) (Fig. 5def). This is an important observation: that λGCV cannot be used as
a mechanism to detect an optimal temporal-spatial regularization trade-off for non-
stationary images. An optimal λ exists for a specified γ. Optimal γ might be selected
for entire frames by using adaptive temporal filtering techniques leading to a frame-by-
frame optimal γ and λ, though this approach was not explored further in this work.

For filtering images, GCV failed to produce usable images for poor SNR (SNR ≤
25 dB) (see lines exiting the top of Fig. 4’s plots) because large λGCV suppressed the
reconstructed image so that there was nothing remaining to filter at the next stage. In
such cases (Fig. 5ghi), a fixed hyperparameter was selected to match Fig. 5def. As noted
in §7.3, with a fixed λ filtering by measurements or images is exactly equivalent: compare
SNR=25 dB Fig. 5def to Fig. 5ghi. When λ is found for each frame before filtering
images the results are similar to filtering measurements but not identical: compare
SNR=40 dB Fig. 6def to Fig. 6ghi. Where SNR was sufficient to allow successful GCV
without temporal filtering (SNR > 25 dB) very similar results were often observed when
comparing filtering measurements or images. Occasionally, filtering images gave odd
“smeared” cyclic oscillations due to harmonic variations in λ at the rate of rotation:
the image intensity varied as spatial regularization changed (Fig. 6g). This non-uniform
smearing could lead to misinterpretation of reconstructed images by giving apparent
structure where none should exist.

Reconstructions using some methods were much more time consuming (most
notably Kalman filtering) but showed similar trends across methods: increasing filtering
beyond the rate of target movement resulted in significant smearing of the image.
Kalman filtering (Fig. 5j), was a notable exception which we discuss later (§7.2). Prior
to this filtering threshold fc/fs > 10−3, reconstructed images were quite similar, with the
exception of Gauss-Newton Kronecker reconstructions which we discuss in the following
section (§7.1). Individual artifacts and how smearing artifacts appeared differ in their
particulars for each method. Reconstructions with measured tank data (Fig. 7) showed
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Figure 3: No correlation between AAM (known “true” image) and ‖x‖ or ‖Jx − b‖
(“true” image unknown) for stationary ( blue dot) and moving ( red dot) images;
AAM > 7.0 ( red dashed line) are no longer recognizable reconstructions

similar trends to the simulations, though images differed due to using only resistive
targets. Kalman filtering reconstructed worse images than in simulation. Spatio-
temporal Gauss-Newton regularized reconstruction with limited frames (n < 10) did
manage to reconstruct reasonable images due to having sufficient SNR to reconstruct
good images with very little temporal filtering.

7.1. Gauss-Newton

In Fig. 5mno, Fig. 6mno, and Fig. 7yzaa, Kronecker-based spatio-temporal Gauss-
Newton reconstructions appear largely independent of the temporal cut-off frequency
(fc/fs) due to the general limitations of a naïve Kronecker approach, as we explain in
the following.

Two observations arise from manipulating the spatio-temporal Gauss-Newton
equation (10). First, the augmented time difference spatio-temporal reconstruction
matrix contains no temporal regularization if the noise covariances are equal

Q̃st =
(
Υ⊗ JTWJ+ Γ⊗ λ2R

)−1
(Υ⊗ JTW)

Q̃s = Q̃st = (I⊗Qs) when Υ = Γ (18)

because the covariances Υ = Γ can be collected using Kronecker identities (Loan 2000).
This is an unlikely scenario in practice since temporal correlations are 1-dimensional
while spatial correlations are 2- or 3-dimensional.

Second, over many frames, a naïve Gauss-Newton Kronecker expansion will run
out of storage. The Kronecker product of large matrices results in very large matrices,
growing at O(n2) for n frames. It is not efficient or desirable to compute these large
matrices directly. There needs to be some more efficient implementation since we are
otherwise left with large sparse blockwise matrices with dense blocks distributed about
the matrix. In our implementation for this work we were limited to ten frames (10
frames: 2.05 GB, 100 frames: 205 GB) which limited our ability to construct effective
temporal filtering as seen in Fig. 5mno, Fig. 6mno, and Fig. 7yzaa, where images with
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Figure 4: Simulated reconstructions (Fig. 2) over a range of SNR (5–40 dB) with AWGN
(90% filtered fc/fs = 2× 10−3, 10% broadband AWGN); (left) stationary; (right) non-
stationary (1000 frames per rotation = 10−3); optimal spatial regularization λGCV is
reduced as temporal filtering fc/fs reduces measurement noise; temporal filtering is
limited by movement in the non-stationary model; and dots indicate selected image
samples in Fig. 5a–f and Fig. 6b–f, respectively

nominally greater temporal filtering look essentially the same. More frames of data
need to be incorporated. Noise (AWGN) is reduced by

√
n: when averaging, a large

number of frames are required to make a significant difference in measurement SNR. A
more efficient implementation or an approximation of the Kronecker product approach
is needed.

With a low frame limit (n < 10), spatio-temporal Gauss-Newton regularization
using Kronecker products was not effective unless there was a well known prior image
to use as a reference. Forcing a strong temporal correlation between a few frames is a
common approach in geophysics settings where 2 or 3 images are used in this Kronecker
Gauss-Newton-type solution (Kim et al 2009, Kim et al 2010, Hayley et al 2011, Loke
et al 2014). In this “known prior image” case, a spatial prior x∗ in (2) and using spatial-
only regularization is a more efficient solution which will penalize the reconstruction as
it moves away from the prior.

If the limitation in number of frames could be alleviated, the Gauss-Newton
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Figure 5: Sample conductivity reconstructions for
SNR=25 dB for each reconstruction method; (a–c)
stationary model where greater temporal filtering re-
moves noise and improves resolution; (d–f) non-
stationary model where temporal filtering causes blur-
ring when beyond the rate of rotation; (g–i) filter-
ing images gives similar results to filtering measure-
ments (d–f); (j–l) Kalman filtering gives nice images
but is computationally expensive and the Kalman gain
sometimes fails to converge (j) possibly resulting in un-
anticipated regularization (see text for details); (m–o)
cut-off frequency (fc/fs) has little impact on spatio-
temporal Gauss-Newton reconstructions

Simulations, 40 dB SNR
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Figure 6: Sample conductivity reconstructions for
SNR=40 dB for each reconstruction method; (a–c)
stationary model where greater temporal filtering re-
moves noise and improves resolution; (d–f) non-
stationary model where temporal filtering causes blur-
ring when beyond the rate of rotation; (g–i) filter-
ing images gives similar results to filtering measure-
ments (d–f); (m–o) as with Fig. 5mno, cut-off fre-
quency (fc/fs) has little impact on spatio-temporal
Gauss-Newton reconstructions
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Figure 7: Tank conductivity reconstructions (resistive
targets) for each reconstruction method; measured
tank data gives similar results to simulations with
the notable exceptions that Kalman filtering (v–
x) gives poorer images and limited Gauss-Newton
spatio-temporal filtering gives a reasonable result since
filtering is not required to produce good images
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Table 1: Kalman filter time (iterations) to convergence

fc/fs

elems (fwd/rec) 10−4 10−2 10−1

21682/813 1:01:07.5 (10000)∗ 0:08:18.4 (1380) 0:00:58.4 (157)
54055/1478 6:04:31.6 (10000)∗ 0:50:21.9 (1406) 0:05:46.2 (160)
229905/1658 8:00:00.0∗ (9032) 1:11:25.0 (1411) 0:09:02.8 (160)

elems = reconstruction dual model elements (fwd/rec); time, iterations = hh:mm:ss (iterations).
∗ = Iteration or time limited, convergence terminated early.

approach would be appealing. The technique is algorithmically rich in potential
applications due to the control afforded by complete freedom in explicitly selecting
time-varying measurement and regional image covariance.

7.2. Kalman filter

A direct alternative to explicitly setting measurement and image covariance is to try
to approximate them using the model and measurements. In Fig. 5jki, and Fig. 7vwx,
Kalman filtering shows promising results but is slow to converge as stronger temporal
filtering is applied (Tab. 1). The value of Kalman gain K and error covariance Ĉ

(12) converge to stable values independent of measurements for constant A,J,P,V

and can be precomputed to give asymptotic K∞ and Ĉ∞ learned from the model
(Kim et al 2006). This pre-computation is often the most time consuming part of
the calculation (Tab. 1 on 3.3 Ghz 4-core i5-2500K with 32 GB memory avail.) and
halting prior to convergence is similar to truncating a singular value decomposition or
halting iterative optimizations early: it can have an uncontrolled regularizing effect as
if stronger spatial/temporal regularization were applied.

Given stable gain and covariance K∞, Ĉ∞, the smoother (13) also becomes stable
H∞. The Kalman gain does not converge with A = I since the error covariance grows
at each iteration when P > 0. To obtain a converged K∞, Ĉ∞, we set A = γI for
γ → 1 and P = (1 − ‖A‖)R−1; R−1 = I: a state transition model predicting a voxel
independent exponential decay with state uncertainty related to rate of change γ.

The state xk for converged gain and covariance K∞, Ĉ∞ simplifies (12) to

xk = Axk−1 +K∞(yk − JAxk−1) with A = γI and K∞ = Ĉ∞JT(JĈ∞JT +V)−1

xk = γxk−1 + Ĉ∞JT(JĈ∞JT +V)−1(yk − Jγxk−1)

xk = (JTWJ+ λ2R̂)−1(JTWyk + λ2R̂x∗) (19)

for R̂ = Ĉ−1
∞ , W = λ2V−1, x∗ = γxk−1 where we find the Wiener filter form

(Wiener 1964) of the single-step Gauss-Newton update and recall that it is algebraically
equivalent (Boyle 2010, appendix B.4) to (2) using the Sherman-Morrison-Woodbury
formula. From this manipulation we see that the time-invariant Kalman filter has
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learned a spatial regularization R̂ that is the specific spatial covariance of the model
limited by noise estimates for state (conductivity parameters) and measurements.

It has generally been observed that Kalman filtering over-regularizes images,
indicating that the “optimal Kalman gain” is not in fact the best choice for EIT
images. There is no temporal regularization in this Kalman formulation until fixed
lag smoothing is applied, so we note that Kalman reconstruction must construct a
more heavily regularized set of images from many frames, as any reconstructed image
noise is propagated into future images through the prior x∗ = γxk−1 term. Given the
numerical noise inherent in reconstructing many frames of data, it becomes apparent
that greater “optimal” spatial regularization (more image smoothing) is required to
control the additional cumulative noise from prior reconstructions. The key advantage
of a Kalman filter is its ability to adapt to changing conditions (the error covariance
estimate) and incorporate predictive information about the model (the state estimate),
neither of which are leveraged in most EIT applications where the Jacobian is not
updated, the system inputs u are unknown, and noise estimates are fixed. There are
opportunities here for better application of Kalman filtering in EIT image reconstruction
but the slow computation of the initial converged error covariance estimate is a major
draw-back. One can argue that this is a “one time cost,” but it must be paid at each
modification of the reconstruction model. Potentially, model updates (modifications
to the FEM mesh, rather than re-meshing) might converge rapidly from a previously
converged solution.

7.3. Spatial then temporal filtering

Fig. 5d matches Fig. 5g to within numerical noise, as do Fig. 5ef with Fig. 5hi,
respectively. Notice that, because the solution is linear, we can perform inter-frame
filtering on the images, rather than the data to achieve identical results (for fixed F and
λ, leading to fixed Qs) without changing the filter.

X = QsF
−1(YΓ−T) = (QsF

−1Y)Γ−T (20)

Unlike in Fig. 5, in Fig. 6 the corresponding images (Fig. 6def to Fig. 6ghi, respectively)
do not match because an optimal hyperparameter λ was selected at each frame. If
one is selecting the hyperparameter λ via GCV, L-curve or another technique at each
frame, then the results will differ because Qs will be changing frame-to-frame. In our
sample images (Fig. 6d–i), the hyperparameter λ differs by small amounts resulting in
noticeably different reconstructions; particularly Fig. 6e and f. Despite this detail, in
our exploration the images for temporal-then-spatial or spatial-then-temporal filtering
are often similar, inclusive of any artifacts that may be present.

The fact that an identical image can be obtained by applying fixed filters to either
image or measurements (20) seems to imply an assumption on the common spatial and
temporal noise covariances, but this is not the case, as we shall see in the next section.
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7.4. Temporal then spatial filtering

The similarities in Fig. 5def/ghi are striking. Are temporal and spatial filtering an
equivalent and efficient replacement for Gauss-Newton spatio-temporal regularization?
Measurement filtering (16) can be manipulated into something resembling the spatio-
temporal Gauss-Newton equation (10) featuring Kronecker products. If we assume an
(approximately) invertible inter-frame filter Γ−T such as the exponential filter for γ < 1,
then by applying the Kronecker identities (Loan 2000)

(CT ⊗A)vec(B) = vec(ABC) (A⊗B)−1 = A−1 ⊗B−1

(A⊗B)(C⊗D) = (AC)⊗ (BD) A⊗ (B+C) = (A⊗B) + (A⊗C)

the expression (16) can be rearranged as

x̃ = (Γ−1 ⊗QsF
−1)ỹ =

(
Γ−1 ⊗

(
(JTWJ+ λ2R)−1JTWF−1

))
ỹ

=
(
Γ−1 ⊗ (JTWJ+ λ2R)−1

)
(I⊗ JTWF−1)ỹ

= (Γ⊗ JTWJ+ Γ⊗ λ2R)−1(I⊗ JTWF−1)ỹ (21)

Comparing (10) and (21) (F−1 = I), the inter-frame measurement noise and temporal
image covariances are fixed to the same matrix Γ on the left-hand side of (10), while
the right-hand side of (21) features an assumption of independence I between frames.
Therefore, we can see that spatial and temporal filtering are not exactly equivalent to
Gauss-Newton spatio-temporal regularization. This disconnect between covariances on
the right and left-hand sides of (21) is striking, yet for many cases reconstructed images
looked quite similar.

8. Discussion

We have examined four methods for making use of the temporal information in EIT
signals.

• Two temporal filtering methods (on measurements and images) were shown to be
exactly equivalent for fixed λ.

• Image filtering was shown to be more prone to failure for low SNR reconstructions.
• Combined spatio-temporal regularized reconstruction was shown to be nearly

similar to filtering methods when the inverse of the filter matrix was used as the
temporal regularization matrix, as is the case for common exponential filters. The
one-dimensional Laplacian smoothing operator [−1 + 2 − 1] is an approximate
inverse for the exponential smoothing filter, and clarifies the functional behaviour
of the temporal regularization term.

• Kalman filtering was shown to be a method that gives the spatio-temporal
regularization form of reconstruction but uses the previous image as an image prior
and finds an approximate covariance for the model through extensive iterations.
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• The spatio-temporal Gauss-Newton formulation offers the greatest freedom in
selecting a fixed prior across all images or, as with Kalman filtering, a prior based
on previous images.

From the temporal filtering approaches, it becomes clear that temporal
regularization across a few frames for controlling noise is not particularly effective,
as it drastically limits the effectiveness of averaging across noisy measurements. We
find that the spatio-temporal regularization using Kronecker products is not currently
practical for large numbers of frames (computational time and storage rapidly become
unreasonable for any useful quantity of temporal regularization), but is an excellent
tool for understanding the inter-play between temporal and spatial regularization as
generalized covariances. Recently, there has been some promising preliminary work
in finding efficient implementations for the spatio-temporal regularized Gauss-Newton
method (Boyle 2017, Adler and Aristovich 2018).

We find the temporal filtering methods using exponential smoothing to be easily
understood and controlled. Performing spatial regularization last enables more reliable
use of “optimal” hyperparameter selection methods such as GCV of L-curve. A key
draw-back of the method is that it cannot be extended to more complex (inter/intra-
frame) regional spatio-temporal covariance relationships because the operations are
performed sequentially.

The Kalman filtering method takes its strength from the ability to adaptively
find “optimal” approximations. Under conditions where the exact values for these
approximations are known, this can only result in poorer quality reconstructions. The
great promise of the Kalman filtering approach is its ability to adapt to changing
noise and model. We feel that the ability to control the interplay between spatial
and temporal regularization, and find globally optimal solutions for a particular set of
data, means that the Gauss-Newton approach (combined with methods such as GCV
or L-curve for evaluating the optimal trade-off and to adapt to varying noise levels or
other measurement conditions over time) provide a generalized framework in which the
highest quality reconstructed images might be produced.

9. Conclusions

This work explored four techniques for spatio-temporal regularized imaging in EIT:
combining spatio-temporal regularization in a Gauss-Newton framework, a Kalman-
based smoother, filtering over reconstructed images, and filtering over measurements
followed by reconstruction of images.

We find that the equations describing these techniques, after translation to a
common Kronecker-based structure, have differences which help explain why artifacts
differ in low quality images. Practically we find that, despite these differences, these
techniques give quite similar results in most of our tests.

In conclusion, we find great promise in spatio-temporal regularized Gauss-
Newton reconstruction approaches for EIT. In particular, the ability to apply different
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regularization and priors to regions or times in an image sequence is a powerful
technique that could aid in, for example, separating lung and heart which operate
at different frequencies and are spatially separated. To realize this promise, efficient
implementations that facilitate the determination of optimal spatial and temporal
hyperparameters must be developed. Adaptive filtering techniques which account for
time-varying measurement noise are closely related to optimal hyperparameter selection
for temporal regularization. We recommend temporal measurement filtering approaches,
in the meantime, because they provide a good baseline method with well understood
failure mechanisms, efficient implementation techniques, and the breadth of (temporal)
digital signal processing literature available to support a variety of measurement filtering
techniques.
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Appendix A. Reconstruction metrics: AAM and GREIT

We examined the possibility of using the GREIT performance figures of merit in this
work instead of the Artifact Amplitude Measure (AAM). The GREIT metrics are:
amplitude response, position error, resolution, shape deformation, ringing, and noise
figure (Adler et al 2009). Noise figure was proposed by the GREIT authors as a way
of setting the spatial regularization λ and we have not considered it further here, as we
have elected to use GCV. Each GREIT metric identifies types of image artifacts that
typically occur in stationary EIT reconstruction.

Reconstructions were simulated at 50 dB SNR, with temporal filtering and Gauss-
Newton reconstruction using Tikhonov regularization and a hyperparameter selected by
GCV. Circular movement of a single conductive target was simulated. (The GREIT
metrics only support a single target in the reconstruction.) In Fig. A1, an optimal
hyperparameter which was large relative to the singular values of the reconstruction
matrix was a strong indicator that the image was being suppressed, as illustrated by
a reduced GREIT amplitude response. A combination of the GREIT position error,
resolution, and shape deformation identify when smearing of the image, due to greater
temporal filtering, has occurred. GREIT’s ringing metric did not identify interesting
artifacts, as the amplitude response and optimal hyperparameter already identify
suppressed (low amplitude) images. The same smearing artifact can be identified by
setting a threshold for AAM, as we have done in this work.

The GREIT metrics were designed to isolate specific spatial reconstruction artifacts.
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Figure A1: Movement reconstruction with SNR = 50 dB using temporal filtering;
GREIT’s amplitude response (AR), position error (PE), resolution (RES), shape
deformation (SD), and ringing (RNG) jointly identify the same artifacts identified by
examining the optimal spatial hyperparameter λGCV and Artifact Amplitude Measure
(AAM).

Movement smearing was captured in four of the five GREIT metrics. We find that AAM
is capable of identifying movement smearing, along with other artifacts, and have elected
to use AAM in this work.
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