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Bioimpedance Spectroscopy (BIS) uses multifrequency impedance measure-
ments of biological tissues to estimate clinically and experimentally relevant
parameters. This chapter reviews the steps involved in measurement, data pro-
cessing, and applications of BIS data, with an emphasis on managing data quality
and sources of errors. Based on a description of of error sources, caused by
measurement configuration, hardware, and modelling, we describe BIS data de-
noising. Two classes of modeling, explanatory and descriptive, can be used to
reduce data dimensionality to a set of parameters or features. Explanatory models
consider the electrical properties of samples and involve fitting data to simpli-
fied equivalent electrical circuits. Descriptive models involve reduction of the
data to a set of eigenvectors/values which can be studied independently of any
assumed electrical characteristics of the sample. Techniques described include
fitting and decomposition methods for extraction of explanatory and descriptive
model parameters, respectively. Denoising techniques discussed include adjust-
ing measurement configuration, corrective algorithms for removal of artifacts and
use of supervised machine learning for identification of features characteristic of
noisy impedance spectra. The chapter concludes with a discussion of the use of
classifiers for labeling BIS data in a range of applications including discrimination
of healthy vs pathological tissues.
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1 BIOIMPEDANCE SPECTROSCOPY OVERVIEW

Bioimpedance measures the voltage required to drive low-level alternating current through liv-
ing tissue. Such measurements provide a safe, non-invasive, and relatively inexpensive method
to measure tissue properties. Biological tissues typically have much more complex impedance
spectra than homogeneous materials, arising from internal membranes and macromolecules.
Bioimpedance is comprised of resistance to movement of charged particles and reactance
which arises from changing electrical and magnetic field opposing movement of electrical
charge. Bioimpedance spectroscopy (BIS) is the acquisition of bioimpedance measurements
at multiple frequencies, and the measured BIS impedance spectra can help characterize the
structural and chemical composition of biological tissue. Research and clinical applications
of BIS include assessment of human body composition, cerebral monitoring and assist in
diagnostic classification of various pathologies.

In many cases, BIS measurements are not considered a primary diagnostic tool due to high
intra- and inter-patient measurement variability. In this work, sources of error are discussed
(Section 2): noise originating from instrumentation design, experimental design (electrode
placement, electrode-interface impedance), properties of biological tissue under test (electri-
cal anisotropy, geometric irregularities) and inaccuracies of models used for data interpreta-
tion. Since raw BIS measurements are large, multi-variate data sets, the raw impedance spectra
usually undergo further processing to calculate a few experimentally or clinically relevant
parameters. These parameters can be used as features to classify tissues under test (e.g. patho-
logical vs normal tissue) or may be subject to further processing including statistical analysis
and monitoring of changes in the parameters over time (e.g. for hypoxia). BIS parameters are
also used as inputs into specialized algorithms for applications such as body composition
assessment and analysis of body fluid levels.

Processing steps, including denoising, parameterization, and classification are of key impor-
tance in ensuring that the raw measured impedance data is converted to relevant, statistically
robust and clinically useful parameters.

Existing surveys on BIS generally focus on instrumentation, measurement design, modelling
and applications, while the processing steps are often only briefly described. In this chapter,
we aim to provide an overview and framework for processing raw impedance measurements.
We also describe factors that affect processing and denoising methods, such as sources of
noise, target application, assumed mathematical model and experimental configuration. The
goal of this chapter is not to present a comprehensive review of the state of the art in BIS
research and applications but rather to summarize the processing and denoising steps for BIS
data.
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1.1 BIS PROCESSING STEPS

The topics in this chapter are organized around major processes which form part of BIS signal
analysis. The sequence of BIS data acquisition and processing steps are described as blocks
as shown in Figure 1.1; relationships (inputs and outputs) are demonstrated by arrow lines
connecting the various blocks. The BIS measurement configuration generally consists of use
of two (bipolar) or four (tetrapolar) electrodes for injection of current and measurement of
resulting voltage drop across a biological sample/tissue. Noise sources, experimental and
instrumentation, affect measurement error and are thus shown as inputs to the measurement
configuration block. Denoising strategies include adjustment of measurement configuration
and removal of noise and artifacts from raw impedance data and model-extracted features.
Impedance data are simplified to a set of parameters using models; the output of the mod-
els can fed to classifiers for labeling tasks or for identifying noise artifacts, monitored for
changes over time or used as inputs of specialized algorithms to measure various physiological
quantities and parameters. In the following sections we first discuss the experimental and
instrumentation sources of noise and their relation to measurement configuration. Next we
describe major processing steps including common forms of data modelling and associated
denoising and processing steps (i.e. fitting methods). We also explain how features extracted
from BIS models can be fed into classifiers for detection/discrimination based applications or
used for further post processing.

2 SOURCES OF INACCURACY

Knowledge of significant sources of error is important in determining optimal measurement
configuration, data processing steps, model selection, appropriate denoising strategies and
for determination of accuracy of the clinical/diagnostic parameters derived from the raw
impedance. Errors in the interpretation of estimated features may be induced by non-ideal
hardware or by models that do not accurately represent the measurement configuration.

2.1 NON-IDEAL HARDWARE

Bioimpedance spectroscopy measurement hardware uses low frequency (Hz to MHz) ana-
log circuits and corresponding sampling methods on strong (mV) common-mode signals
(Figure 2.1). An idealized model of BIS hardware can be constructed from ideal amplifiers,
digital-to-analog and analog-to-digital convertors, filters, wiring and electrodes. Real hard-
ware introduces non-linear and non-ideal behaviour to each of these components which affect
measurement quality. The challenges in implementing reliable hardware that can produce
high quality measurements are addressed through appropriate selection of drive, connectivity,
and measurement circuits.

The quality of the current drivers is determined by quantization errors, current source
matching, output impedance, and frequency range. Connectivity to the body through elec-
trodes and wiring limits system performance by electrode polarization, wiring crosstalk,
leakage currents and stray capacitance. Differential measurements (µV) are limited by Com-
mon Mode Rejection Ratio (CMRR), filtering, analog-to-digital sampling dynamic range and
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Figure 1.1: Block diagram of major steps of BIS data processing

quantization errors, time source jitter, and phase accuracy.
Many systematic errors may be calibrated out, but calibration cannot be universally accu-

rate across all frequency and measurement configurations. High quality calibration is typically
limited to well characterized and repeatable environments. Electrically noisy and relatively
uncontrolled environments, such as operational hospital wards, can make it challenging to
accurately calibrate an instrument. Other errors limit system performance as intrinsic char-
acteristics of the circuit design choices necessary to achieve multi-frequency measurements.
Bioimpedance spectroscopy is, therefore, particularly challenging due to the breadth of the
frequencies across which calibration must achieve acceptable accuracy and repeatability.
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Figure 2.1: Block diagram of typical bioimpedance hardware; stimulus selects a frequency
for an oscillator which controls current sources that drive current through a body
via wiring and electrodes; voltage differences at the measurement electrodes are
amplified and then demodulated to determine the magnitude and phase of mea-
surements

The quality of high frequency measurements are generally limited by CMRR, which drops
off beyond a certain circuit dependent frequency (10-100 kHz for off-the-shelf circuits).

The drive and measurement circuits are designed to support a particular range of impedance
on the body. Supporting a wide impedance range (ohm to gigaohm) though configurable drive
and measurement circuits comes at the expense of circuit complexity, exacerbating calibration
challenges or introducing further sources of error in the measurements.

2.2 EXPERIMENTAL VARIABILITY

When non-ideal hardware is connected to biological materials, additional sources of measure-
ment variance are introduced: contact impedance, mismatch between electrodes, inhomoge-
neous materials, electrode polarization and stray capacitance.

One major source of error is the high impedance at the electrode-skin contact boundary.
This impedance, commonly noted as Zep , is frequency dependent and tends to result in high
impedance values with large variance at low frequencies. The high variability of Zep may result
in impedance mismatches that affect the measurement accuracy. Electrode impedance mis-
match is defined as a large difference of Zep between any electrode pair. Electrode mismatch
effect on impedance measurements was quantified through analysis of a set of tetrapolar (sepa-
rate voltage and current electrode pairs) right ankle and wrist measurements on three subjects.
The device (SFB7 spectrometer) was set to perform a frequency sweep from around 3 to 999
kHz. Electrode mismatch artifact was introduced by replacing a full electrode with an electrode
cut in half thus reducing contact surface. Separate experiments were implemented where
half electrodes were provided in turn for current carrying and voltage electrodes. Impedance
spectrum comparisons for the different test cases showed that current carrying electrode
mismatch resulted in very slight changes to measured values. Voltage electrode mismatches
resulted in larger artifacts. Specifically a significant increase in resistance (real component
of impedance) and impedance modulus was measured, although this effect decreased as
frequency was increased. Control of voltage electrode-skin contact is thus critical to ensure
reduction of this artifact.

The non-invasive two electrode measurement is often dominated by the high impedance
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of the outermost layer of the epidermis, referred to as the stratum corneum (SC). The SC is
comprised of closely packed keratinised cells that act as barrier against moisture, radiation,
microbes and chemicals. This high impedance layer generates impedance spectra that often
can not be interpreted by the standard Cole model (see Section 3.1.2); in addition regions of
interest are usually in deeper tissue layers which provide minimal contribution to the total
impedance measurement.

An additional factor that contributes to noise is polarization that occurs at the boundary
interface between the electrode and tissue. This polarization causes an artificial contribution
to measurement impedance referred to as electrode polarization impedance (EPI). EPI is
frequency dependent, can mimic the dispersion-like behaviour of tissue and provides an
undesired contribution to impedance especially at low frequencies.

Boundary artifacts can be avoided or reduced by stripping away the SC layer, by invasive in-
sertion of electrode contact points in deeper tissue layers and by specific denoising processing
techniques (see Section 3.5). Alternatively a tetrapolar electrode arrangement is used whereby
current injection and voltage measurements occur with different electrode pairs. This results
in an impedance measurement that is characteristic of tissue deeper than the boundary layer.

In a tetrapolar arrangement with separate current carrying (CC) and voltage pick up (PU)
electrodes transfer impedance is measured. When voltage amplifiers are ideal no current
passes through the PU electrodes and therefore electrode-boundary impedance is not intro-
duced in the measurement. The contribution of each volume element of the tissue to the
measured impedance is determined by the sensitivity of the electrode system; this is defined
as

S = Jcc · Jr eci (2.1)

and transfer impedance is

Z =
∫

V
ρ Jcc · Jr eci (2.2)

where Jcc and Jr eci are current density vectors representing unity current through the current
carrying (CC) and pick up (PU) electrodes respectively and ρ is the specific impedance of each
tissue element. Transfer impedance is then affected by the arrangement and spatial configura-
tion of the PU and CC electrodes. In general increasing inter-electrode distance results in a
impedance measurement corresponding to deeper tissue layers. Analysis of the sensitivity
field is important for proper interpretation of tetrapolar impedance. For instance a negative
sensitivity field may result from certain electrode arrangements and provide measurement
artifacts in the form of negative impedance values.

Sources of error of in-vivo BIS impedance measurements may include interaction of stray
capacitance with elements of the measurement device as well as other devices. A study
compared the impedance output of two BIS devices (Xitron 4000B and an SFB3) in an ICU
setting where the environment and participants were controlled so as to be comparable for
both experiments. The instruments used a tetrapolar lead arrangement, a constant current
source and measured impedance at logarithmically spaced frequencies (5-500 KHz - Xitron
4000B, 4 -1000 KHz - SFB3). Measurements taken in the ICU room resulted in significant
changes to the high frequency end of the spectrum when compared to measurements taken
in a room free of electronic devices. These changes were hypothesized to be predominantly
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due to the interaction of stray capacitance between the device and surrounding objects. The
authors of the study recommend minimizing stray capacitance by active screening of the pick
up voltage leads and by careful design of the current drive system.

Research has shown evidence of the role of biological tissue properties in causing deviation
in impedance spectra from theoretical model predictions. Whole body and segmental BIS
impedance spectrum were simulated using an equivalent electric circuit in the frequency
range 5-1000 KHz; stray capacitance pathways considered included cable capacitance, inter-
electrode lead capacitance, capacitance between body segments and the earth and capaci-
tance between the device and earth. The latter two pathways were shown to cause significant
dispersion artifacts for frequencies over 500 KHz. For segmental measurements, impedance
spectra was found to be sensitive to switching electrode leads. Remaining artifacts are thought
to be caused by the superposition of different tissue type dispersions.

Other sources of error are related to the intrinsic variability of biological tissue. Change in
tissue geometry, blood perfusion and skin conductivity are all factors that affect impedance.
Studies have shown that the tissues samples undergo significant conductivity changes a short
time after extraction.

3 MODELLING

3.1 MODEL ACCURACY

Bioimpedance data acquisition provides a measurement of impedance amplitude and phase,
Zi , at a set of frequencies, fi . As discussed in the previous section, these measurements are
subject to both random and systematic sources of error, which vary as a function of frequency,
typically with large errors at higher frequencies. The next step in data analysis is typically to fit
the measured values to a model and to extract the best-fitting parameter values.

Models, M(·), are linear or non-linear functions of a small number of parameters, p, which
predict the impedance, Ẑi as a function of frequency. Thus,

Ẑi = Mp ( fi ), (3.1)

where M is evaluated using parameters, p. Model fitting is the process of finding the parameter
values, p̂, which best fit the measured data, as expressed by

p̂ = argmin
p

(∑
i

∣∣∣∣∣∣Zi −Mp ( fi )
∣∣∣∣∣∣) (3.2)

This equation can be interpreted as finding the p values for which the model’s predictions are
as close as possible to the measured Z values. Several variants of the norm ||Zi −Mp ( fi )|| are
used to account for differences in the experimental conditions. One important consideration is
to use a weighted norm at each frequency proportional to the data reliability at that frequency
(i.e. the inverse of the estimated error).

If the model is linear, there is often a one-step algebraic solution for the parameter values.
However, for non-linear models, an iterative solution for (3.2) is required. In most cases, such
algorithms are not guaranteed to find a correct solution. Instead, they suffer from the problem
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of local minima, where the calculated solution is less than nearby values, but is not the overall
best parameter.

The most important limitations of models is due to the systematic errors introduced by the
instrumentation. For example, cables can introduce a bias due to parasitic capacitance and
impedance at high frequency. These instrumentation-related changes will occur in addition to
the “real” tissue-related changes in the sample. A model fitting will choose parameters which
match both the real and the parasitic effects. However, if the model parameters are designed
to explain only frequency-related changes in the tissue properties then the interpretation will
be incorrect.

The most important method to manage model accuracy is through careful calibration. The
experimental configuration must be measured with (at least one, but preferably multiple)
samples of known properties from which the instrumentation biases can be measured. Using
such a calibrated system allows measurements to be associated with tissue rather than the
instrumentation.

The complexity of biological system necessitates using certain simplifying assumptions to
provide meaningful ways of analyzing and interpreting the data. These simplified assumptions
form the basis of two general methods of representing bioimpedance data.

Explanatory models consider the anatomical and electrical models of the tissue being
measured. Generally tissue electrical properties are considered as lumped, e.g capacitance
and conductance may be modelled as a single circuit comprised of a resistor and capacitor in
parallel. Model complexity may however range from single electrical circuit models to complex
finite element models that aim to represent both tissue anatomy and electrical properties with
a high degree of fidelity. Here we consider the most common equivalent circuit models.

Descriptive models consider biological systems as black boxes; this phenomenological
approach emphasizes analysis of parameters such as impedance, phase, time course and
frequency without necessarily any attempt of correlation with known or assumed electrical
properties of the measured tissues. Included in this model family are multivariate models that
provide a method of describing features based on intrinsic organization and structure of the
data.

3.2 EXPLANATORY MODELS

Biological tissue can be modeled as an aggregation of cells with high impedance membranes
containing intra-cellular fluid surrounded by extra-cellular fluid. At low frequencies, current
will tend to flow through extra-cellular fluid, whereas high frequency currents will shunt
through cellular membranes and intra-cellular fluid. In general the electrical properties of
biological materials are dependent on internal tissue structure and chemical composition. At
specific frequency bands rapid drops in impedance, referred to as dispersion zones, occur.
Schwan identified three major dispersion zones in living tissue referred to as the α, β, and γ
dispersions where α, β, and γ correspond to frequencies 100 Hz, 1 MHz and 10 GHz respec-
tively. The β dispersion is thought to be affected by macroscopic tissue structures such as cell
membranes, oedema and membrane polarization. This dispersion range is thus considered to
provide most of the clinically relevant information and is therefore of primary importance in
the design of BIS experimental and instrument design. Equivalent circuit models are therefore
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Figure 3.1: Idealized circuit diagrams for (a) Debye and (b) Cole models

designed to mimic the dispersion of biological tissue through an arrangement of resistors and
capacitors.

3.2.1 DEBYE SINGLE DISPERSION MODEL

Simple systems that are characterized by a single relaxation time constant have a single
dispersion, referred to as the Debye single dispersion, separating two permitivity zones at low
and high frequencies respectively. The permittivity levels are separated by a transition zone
around a characteristic relaxation frequency fc . This system can be modelled by a 1R −2C
electrical circuit. The circuit has no parallel resistor to allow DC flow since this represents a
purely dielectric material with no free flow of ions. In terms of admittance Y where Y = 1

Z , the
complex admittance and capacitance of this circuit is written as:

Y = jωC∞+ jω∆C

1+ jωτ
(3.3)

where the characteristic time constant τ= R∆C . The characteristic relaxation frequency of
the circuit is fc = 2π

τ . The relationship (3.3) is illustrated as a circuit in Figure 3.1a. At low
frequencies the impedance of the circuit is largely a function of the parallel combination of
C∞ and ∆C , whereas at high frequencies admittance of the circuit is dominated by C∞.

3.2.2 COLE MODEL

When tissue reactance is plotted in the complex plane against real resistance, an arc of a
semi-circle results, with frequency intercepts on the real resistance axis at R0 and R∞. In
order to account for an observed depression of the center of the semi-circle below the real
resistance axis, Cole proposed modifying the capacitor of the 2R-1C electrical circuit to an
ideal conductance element G in parallel with a non-realizable electric element referred to
as a Fricke constant phase element (CPE). This proposed circuit for modelling impedance
data is referred to as the Colez system. The CPE is characterized by phase valueΦ that can be
anywhere between 0◦ and 90◦. The CPE is modelled as a parallel resistor and capacitor; both
these elements are frequency-dependent so that the phase can be set to a constant which is
independent of frequency. The tissue impedance spectra can then be modelled as
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Z ( f ) = R∞+ R0 −R∞
1+ ( jωτ)α

(3.4)

Changing the resistance terms R in the fraction to conductance terms G , so that ∆R = R0 −
R∞= 1/∆G , (3.4) can be rewritten as

Z ( f ) = R∞+ 1

∆G +∆G( jωτ)α
(3.5)

where, Z ( f ) is the frequency dependent impedance, ω is the angular frequency in Hertz, α is a
dimensionless phase quantity between 0 and 1 and τ is RC - the characteristic time constant
of the tissue. The relationship (3.5) is illustrated as a circuit in Figure 3.1b.

The Cole equation may be rewritten in admittance form, as

Y =Go + ∆G

1+ ( jωτγ)−α
(3.6)

where G0 is the conductance at low frequency.

3.2.3 FEATURE EXTRACTION OF EXPLANATORY MODELS

Cole model parameters are the most common explanatory features extracted from bioimpedance
measurements. Cole modelling results in the reduction of impedance spectra to characteristics
of a lumped electronic circuit and is the primary method used for feature extraction.

The essence of Cole parameter extraction is the fitting of a semi-circular arc in the complex
plane where the horizontal axis is the resistance or the real part of the impedance and the
vertical axis is the reactance or the imaginary impedance component (Figure 3.2). The right
and left intersection of the arc with the horizontal axis are R0 and R∞ respectively. The semi-
circle thus has an approximate radius of R0−R∞

2 when α approaches one. α is a dimensionless
quantity that assumes values between 0 and 1 and provides a measure of the position of the
Cole semi-circle with respect to the horizontal (resistance) axis , and τ is the characteristic
time constant which corresponds to characteristic frequency fc (at which reactance is at
a maximum). The resulting extracted parameters can then be defined by the vector m =
[R0,R∞, fc ,α].

Cole parameters can be fitted without direct impedance measurements (through knowledge
of the measurement filter transfer function and gain characteristics), by impedance magnitude
measurements alone, or through use of both real and imaginary impedance components.
Advantages of the first two methods are a reduction in complexity of device design since
phase measurements are not required; in practice however Cole fitting algorithms usually
consider real and imaginary impedance since most BIS devices are designed to measure phase
information.

Biophysical interpretation of the Cole parameters is challenging due to the simplifying
model assumptions as well as noise factors that affect the measurements. In general R0 and
R∞ are considered to be indicative of tissue conductive and capacitive properties as well as
functions of body segment geometry and electrode configuration. fc and α are properties of
measured tissue; α is considered a measure of tissue heterogeneity scaled between 0 - highly
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Figure 3.2: BIS data errors; data (red) collected at a variety of frequencies f are fitted to a Cole
model α,Fc ,R0,R∞ (blue) with error ei for each data point (xi , yi )

homogeneous and 1 - highly heterogeneous, whereas fc is the characteristic frequency at
maximum tissue reactance. α has been shown to be sensitive to measurement variability and
is relatively insensitive to variations of tissue properties whereas fc has a higher sensitivity to
different tissue properties but is relatively stable to measurement configuration changes. fc is
thus of singular importance for discrimination between various tissue types.

3.2.4 GRADIENT MINIMIZATION FITTING METHODS

Cole model fitting methods F are usually based on the least squares (LS) gradient minimizing
method. The radial error ei is the distance between the data point (xi ,yi ) and the fitted
semi-circle (see Figure 3.2). The total LS error function for N measured frequencies is then:

FLS(x0, y0,r0) =
N∑

i=1
e2

i =
N∑

i=1

(
r0 −

√
(xi −x0)2 + (yi − y0)2

)2

(3.7)

where x0,y0,r0 and xi ,yi are fitted and experimental points respectively. Optimally fitted points
are obtained by iteratively minimizing the error function through the gradient method. In
general BIS data fitting is a non-linear process, thus the reduction of the error function is
referred to as a non-linear least squares (NLLS) problem. Limitations of this method are that
standard NLLS algorithms are sensitive to outliers and non-normally distributed errors. This
type of noise is common in BIS measurements since data is usually not normally distributed
due to the limited number of frequency points.

An alternative fitting method is the least absolute deviation (LAD) algorithm. The LAD error
function is the sum of the absolute values of ei and is written as:

FLAD(x0, y0,r0) =
N∑

i=1
|ei | =

N∑
i=1

∣∣∣∣r0 −
√

(xi −x0)2 + (yi − y0)2

∣∣∣∣ (3.8)

LAD performance and accuracy were shown to be superior to typical LS methods for simulated
data. When Cole parameters were extracted from simulated data with outliers (30% deviation
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at 2 frequency points) and with random noise (±10% at 16 frequency points), LAD derived
parameters had significantly lower error than parameters fitted by the LS method. The LAD
method is however computationally more demanding than the LS algorithm.

3.3 EVOLUTIONARY COMPUTATIONAL FITTING

Despite the superior performance of LAD relative to LS, both methods are still affected by noise
and may converge to a local minimum. Stochastic methods from the family of evolutionary
computation have been evaluated as alternate fitting techniques. The principal steps of
evolutionary algorithms can be summarized as: generation of a random group of individuals,
evaluation of the fitness of the individuals based on predetermined criteria (i.e. convergence),
selection of the best fit individuals for reproduction, breeding new individuals, evaluation of
the fitness of the new individuals and repetition of these steps until the problem has converged
to a desired level.

An example of an evolutionary computation method is the Bacterial Foraging Optimization
(BFO) algorithm which is designed to mimic the swarm foraging and cooperative behaviour of
E. Coli. The BFO algorithm initializes bacteria population position, evaluates the fitness of each
bacteria based on predefined criteria, simulates random and directed bacteria movement,
reproduces healthy bacteria based on fitness criteria and reinitilizes bacteria position until
convergence is reached.

In the context of BIS measurements, bacteria position can be defined based on a fitness
function J as:

J =
N∑

i=1
|Zi −Fi | (3.9)

where Zi and Fi are experimental and measured BIS data points respectively for N number of
frequencies. Bacteria position is represented by

θi ( j ,k, l ) (3.10)

which represents the i th bacterium at the j th chemotactic, k th reproduction and l th elimination-
dispersal step. The fitness function of the i th bacterium can then be written as

J (i , j ,k, l ) = J (i , j ,k, l )+ Jcc

(
θi ( j ,k, l ),P ( j ,k, l )

)
(3.11)

where P ( j ,k, l ) are position coordinates of the i th bacterium and Jcc is a function that rep-
resents added fitness by simulating bacteria swarming (including cell-to-cell attraction and
repelling effects).

BFO algorithm performance was evaluated by fitting simulated BIS data to the Cole model
with added radial random noise (±10% and ±30%). Average Cole parameters were estimated
after running the algorithm 50 times. When compared to a standard LS algorithm, BFO
fitting had a lower relative error and lower standard deviation. The LS fitting performance
deteriorated as noise levels were increased whereas the BFO algorithm was much more robust
with a slight decrease in accuracy resulting from the noise increase.

A significant limitation of evolutionary algorithms is higher computational complexity.
The LS method is much more efficient in terms of execution time. This suggests that for

12



applications where speed and efficiency is paramount, such as real-time monitoring, the LS
method may be more suitable. In most cases however the superior accuracy of the evolutionary
algorithm fitting methods outweigh the limitations caused by slow processing speeds.

3.4 DESCRIPTIVE MODELS

Principal Component Analysis (PCA) is a non-parametric descriptive method of modelling and
analyzing data where no assumptions are made concerning the physiology or physics of the
measured phenomenon. PCA is used to reveal internal structure of the data in a way that best
explains the variance in the data.

In the context of BIS measurements a data matrix X , can be generated composed of M ×N
rows and columns where M is the number of observations or measurements and N is the
number of frequencies at which the measurements are taken. The data is then mean centered
X − X̄ . The covariance of the mean adjusted data is calculated as

Cx = [ci j ] = 1

M −1

M∑
k=1

xki xk j , i , j = 1,2, ..., N (3.12)

where xi j is the element corresponding to the i th impedance measurement at the j th fre-
quency. Cx can then be expanded according to

Cx = 1

N −1

N∑
i=1

σ2
i V T

i Vi (3.13)

whereσi =σ1 ≥σ2 ≥ ... ≥σN ≥ 0 are singular values and vi = [v1i ,v2i ,...,vMi ] where i = 1,2, ..N
are singular or eigenvectors of Cx respectively. The expansion of the covariance matrix provides
a linear orthogonal basis that represents the directions of variance in the data.

The singular value decomposition (SVD) may be used to efficiently calculate the PCA or the
singular values and vectors may be used directly. The SVD technique involves direct expansion
of the data matrix X of M measurements (rows) and N frequencies (columns) according to

XM xN =
N∑

i=1
Uiσi V T

i (3.14)

where σi =σ1 ≥σ2 ≥ ... ≥σN ≥ 0 are singular values of X and Ui and Vi are the left and right
singular vectors of X .

Generally singular values are truncated beyond the rank r of the data matrix, where r is
assumed to be smaller than the number of frequencies; non-zero singular values beyond the
r -th singular value are assumed to be caused by noise.

3.4.1 FEATURE EXTRACTION OF DESCRIPTIVE MODELS

In PCA, principal components indicate the direction and magnitude of data variability; axis
orientation is provided by the covariance eigenvectors and magnitude by eigenvalues. Prin-
cipal components are ranked in order with the largest principal component corresponding
with the axis oriented along the largest direction of data variability. Usually most of data
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Figure 3.3: Denoising methods presented in BIS literature. R and X in the figure represent
resistance and reactance over a defined frequency range. Rd and Xd represent the
resistance and reactance over the same frequency range after denoising.

variance and meaningful information is contained within the first few principal components,
thus PCA provides a useful method of reducing dimensionality of multivariate data, like BIS
measurements, without loss of essential information.

Feature extraction is generally comprised of PCA scores which are obtained by mapping
(by the dot product operation) impedance spectra on the new set of uncorrelated orthogonal
vectors Vi . The scores, essentially projections of impedance measurements on the new orthog-
onal basis, are considered as features of the spectrum and can be fed to a classifier for further
analysis.

Although most of the information content of the data or covariance matrix is represented in
the first few eigenvectors, the precise demarcation between essential information and noise
can be subject to trial and error depending on the application. For example a classification task
of categorizing arm position achieved highest accuracy when the second principal component
was selected as an essential feature of the impedance spectra.

3.5 DENOISING

Reduction of noise and pre-processing are crucial elements of analysis and interpretation
of inherently variable and noisy data like bioimpedance measurements. Sources of noise as
well as ways to reduce noise and artifacts by following specific experimental procedures or
by using particular measurement configurations were detailed in Section 2. In this section,
we will focus on algorithmic solutions for reducing the noise. The denoising block shown
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Figure 3.4: SVD denoising sequence. Real and imaginary impedance components are
parametrized using SVD to the singular vector V1. Remaining vectors are discarded,
BIS complex data is reconstructed and Cole parameters are then extracted.

in Figure 1.1 has raw bioimpedance data as an input and produces bioimpedance data with
improved signal-to-noise ratio at the output that is connected to modelling blocks. More
detailed representation of denoising steps are shown in Figure 3.3. As can be seen in the figure,
the majority of denoising methods are implemented on raw bioimpedance data and therefore
are part of the pre-processing steps. A number of methods however are described as processing
and classification of noise after data modelling; these techniques perform denoising as part of
the data post-processing.

Reducing the complexity of the BIS instrumentation and fitting algorithms is one strategy
being pursued to eliminate some sources of error; for instance, methods of fitting Cole pa-
rameters from resistance or impedance magnitude only measurements have been developed.
These type of methods are described as “selecting parameters less sensitive to noise” in Fig-
ure 3.3. Parameters extracted from these measurements have been demonstrated to have an
accuracy exceeding or comparable to parameters extracted from complex impedance (real and
imaginary components). The implications of reduced hardware complexity is that removal of
phase sensitive measurements eliminate the cause of many errors such as noise generated
from capacitive leakage.

Ensemble averaging can reduce zero mean, unbiased noise from impedance measurements.
Averaging can be calculated immediately after data acquisition or following extraction of Cole
parameters. However, averaging of model parameters is known to introduce new errors so
averaging raw data is the preferred approach.

In some cases averaging repeated measurements is not effective because noise may have
systematic biases even for single subject measurements. In such cases the SVD method has
been used successfully as a preprocessing, denoising method (sequence steps are shown
in Figure 3.4). The raw impedance data is first decomposed by the SVD method to a new
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orthogonal basis. The first singular vectors of the real and imaginary components are assumed
to represent the primary information content and they are retained, while the remaining
vectors are discarded. The real and imaginary impedance are then reconstructed and Cole
parameters are extracted. In order to compare the efficacy of SVD-based noise removal,
BIS data was simulated using an equivalent circuit mimicking the electrical properties of
the various arm tissues (muscle, fat and blood) and additive Gaussian white noise (AGWN)
was added to simulated voltage measurements in the time domain. Cole parameters were
estimated with simulated data with and without pre-processing. The mean and the standard
deviation of relative error of Cole parameters extracted from SVD-preprocessed data was
shown to be much less than for parameters derived from uncorrected data.

The Hook effect appears as a hook-like deviation in Cole semi-circle - most noticeably
at high frequencies. This artifact is caused by capacitive leakage which generates errors
in all impedance components (phase,reactance, resistance and modulus). Time delay (Td )
compensation, an established method of removing the hook deviation, consists of multiplying
the measured impedance spectrum, Zmeas(ω) by an exponential in the form of e− jωTd where
Td is a scalar. Deficiencies of the time delay method include the inability to correct phase and
magnitude distortions at all frequencies with a single scalor factor. A newer compensation
approach involves multiplying the impedance spectra with a complex valued, frequency
dependent value of Td that is a function of both the measured impedance Zmeas(ω) and
parasitic capacitance Cpar . Specifically Td is given by:

Td (ω) = Log [1− jωZmeas(ω)CPAR ]

jω
(3.15)

the corrected impedance is then:

ZCor r (ω) = Zmeas(ω)
1

1− jωZmeas(ω)CPAR
(3.16)

As frequency is increased, tissue susceptance, the inverse of reactance, decreases towards
0. Increase of susceptance at high frequencies is due to capacitive coupling which occurs in
parallel to the measurement circuit; the susceptance slope can therefore be used to estimate
Cpar .

Polarization of the electrodes, the EPI artifact, can be eliminated by modifications to the
measurement setup presented in Section 2. Other methods include estimation of EPI by
calibration, or by varying measurement electrode distances, followed by subtraction from the
measurement data as shown in Figure 3.4. Post-process modelling techniques can be used for
removal of EPI: tissue and EPI are generally modelled as a series of Cole impedances which
can be converted to a parallel admittance circuit. The advantage of post-processing is that
for low frequencies where EPI is dominant, admittance converges to a low value; whereas low
frequency impedance will become very large or diverge. Assuming the characteristic time
constants of EPI and measured tissue are sufficiently different, the influence of EPI can be
identified and separated from the total measurement data.

The use of supervised machine learning has been proposed as a post-processing method
for identification and classification of different types of artifacts in BIS impedance spectra.
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First, five frequency bands were defined as a function of characteristic frequency fc : VLF ( f <
fc /5), LF ( fc /5 < f < fc /2), MF ( fc /2 < f < 2 fc ), HF (2 fc < f < 5 fc ) and VHF (f > 5 fc ). Next, analysis
of a database of 1502 real BIS spectra was used to generalize impedance artifacts in 6 different
categories distributed through the frequency bands. These errors included various degrees
of Hook effect due to capacitive leakage and abnormal decrements in reactance. The next
step was feature extraction; for each impedance measurement the magnitudes of resistance,
reactance, conductance, susceptance, impedance modulus, and angle were calculated after
fitting to the Cole model. The relative error between the fit and measurement were then
calculated over the defined frequency bands providing a total of 30 features. The features
were labelled and then fed to a least squares linear discriminant analysis (LDA) classifier.
The classifier was then trained by adjusting the weights using an evolutionary algorithm
(EA) to reduce the mean squared error (MSE) (defined as the difference between the LDA
output and true values). The potential efficacy of this approach was demonstrated by classifier
performance; impedance spectra were labelled with high accuracy giving error rates as low as
0.16%.

With recent advances in machine learning, we expect that classification and machine
learning methods for identifying and removing noise and artifacts will be the focus of increased
research efforts over the next several years. This potential step of using classifiers for intelligent
noise removal is illustrated with the dotted line in Figure 3.4.

The best approach for noise removal is not limited to a single technique and may be based
on a combination of the methods described here. In all cases sources of noise and impedance
artifacts should be carefully studied before defining an optimal strategy of pre- and post-
process denoising techniques.

4 DATA CLASSIFICATION

4.1 GENERAL CLASSIFICATION SEQUENCE

Classification is defined as the problem of identifying to which set of categories or classes
a new observation belongs. Generally the classification sequence (see Figure 4.1) begins by
extraction of features from a set of measurements; in the case of multivariate data such as
BIS measurements, data dimensionality is usually reduced through fitting to a simplifying
model or by other parametrization techniques. Parameters can be derived from explanatory
models which are based on tissue equivalent circuits such as the Cole model. Alternatively
features can be extracted from descriptive multivariate based methods such as PCA or SVD
which do not consider the biological origin or structure of the data source. The data features
are then provided to the classifier for training whereby the classifier, using a predefined rule
based system, separates the measurements into categories. The trained classifier is then used
to categorize a new unlabeled measurement test set based on features derived from the same
parameter extraction method.

Appropriate classifier selection is comprised of a number of steps including:

• determining essential features that are relevant to the type of diagnostic decision re-
quired (for example, conductivity of tumors is known to be different than healthy tissue)
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Figure 4.1: Schematic of general classification sequence. Features extracted from a training
dataset are used for training a classifier. Parameters extracted from a test dataset
are fed to the trained classifier which then provides a prediction of the class label of
the new data.

• determination of the optimal classifier (best decision boundaries) in the feature space
for discrimination between classes

• setting the required accuracy of the classifier

Classifier performance is usually quantified by comparison to a “gold standard.” In the con-
text of BIS, measurements may be used to assist in formulating a diagnostic decision about
the malignancy of a tissue. Classification performance can be compared to direct clinical
measurements such as tissue biopsy and lab analysis.

A classification confusion matrix is shown in Table 4.1. The percentage of correct deter-
minations of tissue pathology (true positive (TP)) is referred to as the classifier sensitivity
Se = T P/(T P +F N ), whereas the percentage of correct determinations of tissue health (true
negatives(TN)) is the specificity of the classifier Sp = T N /(T N +F P ). In our example a false
positive error (FP) is the incorrect classification of tissue as malignant, whereas a false negative
error (FN) is the incorrect classification of tissue as healthy. Classifier accuracy can then be
quantified as the ratio of correct decisions made over total decisions (correct and incorrect);
stated formally this is:

ACC = (T P +T N )

T P +F P +F N +T N
(4.1)
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Although 100 % accuracy is desirable, in practice as sensitivity increases, specificity is usually
reduced; this tradeoff is demonstrated in a receiver operating characteristic (ROC) curve where
sensitivity is plotted vs the FP rate or 1 - specificity. Performance is commonly defined as the
area under the curve (AUC) which is a measure of the classifier discrimination. An AUC of 1
demonstrates ( a technically unachievable) perfect discrimination whereas an AUC of 0.5 is
indicative of a random predictor.

4.2 CLASSIFIER TYPES

Both statistical and hierarchical supervised classifiers are used for BIS classification tasks.
Classification trees are hierarchical classifiers for categorical variables which provide a high
degree of flexibility and exploratory power while not assuming any underlying probability
distribution. Each feature with the potential for classifying a data set occupies a node in the
decision tree which partitions the data set into two subgroups.

Statistical classifiers include different types of supervised learning methods such as linear
discriminate analysis (LDA), k nearest neighbour (k-NN) and artificial neural networks (ANN).
The LDA classifier assumes Gaussian class-conditional densities where classes have equal
covariance. The boundary between classes is linear which represents a limitation for typically
non-linear BIS measurements. LDA is computationally efficient and can be computed directly
from the data without using any search algorithms. LDA can however result in over-fitting;
a proposed solution has been to use PCA for data dimensionality reduction prior to LDA
classification.

k-NN returns k points closest to a new data point and assigns a label based on the status
of the majority of the k returned points. A smaller value of k leads to smaller training errors
while larger values lead to more stable predictions due to a voting effect. In BIS applications,
accuracy of k-NN classifier was improved after data dimensionality had been reduced using
PCA.

Soft independent modelling of class analogy (SIMCA) consists of a collection of PCA models,
each one defined for a different class. Limits are defined around the class of each PCA model.
A new data point is classified based on the distance between the point and the nearest class. A
limitation of the SIMCA method is the difficulty of interpreting and relating inter-class distance
to data categories.

ANNs require relatively large training sets; this is one of the reasons why they are not
commonly used in BIS applications where the number of subjects are relatively small. ANNs

Table 4.1: Confusion matrix

- Predicted condition - positive Predicted condition - negative

True condition - positive True positive False Negative

(Type II error)

True condition - negative False Positive True negative

(Type I error)
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perform well when dealing with multidimensional features and when there is a non-linear
relationship between the input and output features.

4.3 APPLICATIONS

Table 4.2 shows some examples of BIS data used in classification tasks for both assisting in a
diagnostic decision and non-diagnostic applications.

Classification applications for assisting in diagnosis include discrimination of normal versus
cancerous tissue mainly for breast and skin cancer, detection of diabetes related change in the
skin and distinguishing between stroke patients and healthy volunteers.

Body composition is known to change with diabetes due to skin and connective tissue
related changes - beginning first in the arms and legs. Classification based on principal
component regression was used on a sample of 16 subjects with diabetes and 12 control
subjects. First the measurements were classified according to gender (male and female) based
on PCA scores of capacitance. After separation of the data by gender, data was further classified
into patient and control groups. Use of leg and feet measurements resulted in the highest
classification accuracy.

For skin cancer application, two types of electrodes were considered: non-invasive and
microinvasive electrodes. Features were extracted using PCA and then fed to an LDA classi-
fier. A separation of 96% sensitivity and 86% specificity between benign nevi and basal cell
carcinoma was achieved using the regular non-invasive probe while a similar high sensitiv-
ity/specificity separation between benign nevi and malignant melanoma was achieved using
the microinvasive electrodes.

Cole parameters R0 and R∞ were used for distinguishing between normal and stroke pa-
tients. Classification was based on a set of pre-defined criteria characterizing healthy and
pathological states. The study involved 6 volunteers and 3 patients who suffered a unilateral
stroke. In healthy controls, 100% of measurements were successfully classified, while a lower
accuracy was achieved in detecting patients with stroke.

Non-diagnostic application include monitoring tasks such as determining the onset of
hypoxia or measuring body parameters such as relative levels of fat and fluid. Other applica-
tions include measuring muscle status (contracted or relaxed), categorizing tissue type and
classifying body orientation (arm position).

Sixteen measurements were obtained from a single subject with relaxed and contracted
biceps brachii muscle where the arm was oriented in different positions. SIMCA was applied
to complex impedance values consisting of magnitude and phase; contracted and relaxed
muscles were classified with an accuracy of 80%.

A Bayesian classifier was used to determine different types of tissues at the tip of a needle
containing a bioimpedance probe. An animal study demonstrated that the classifier could
distinguish between fat, muscle, tendon and blood tissues with an accuracy higher than 85.5%.

The accuracy of classification algorithms was compared for a bench mark test described as
properly labeling arm orientation (up, down and horizontal). Data was collected from eight
subjects over three different sessions. PCA and the Cole model were used for feature extraction;
features were then fed into various classifiers for evaluation of accuracy. Classifiers tested
included SIMCA, LDA, quadratic discriminant analysis (QDA), decision tree and k-NN. It was
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Classification Type Description
Assisting in Diagnostics
Lindholm et al. 1998 Application: Detection of diabetes-related changes in the skin

Validation: Skin biopsy
Number of subjects 28:
Classification method Principal component regression:

Atefi et al. 2012 Application: Detection of stroke
Validation: Previous diagnosis of stroke
Number of subjects: 6 healthy controls and 3 stroke patients
Classification method:Rule-based using R0 and R∞ Cole pa-
rameters

Aberg et al. 2005 Application: Skin cancer
Validation: Skin biopsy
Number of subjects: 99 subjects with pigmented benign nevi,
28 with basal cell carcinoma, and 13 with malignant melanoma
Classification method: PCA and LDA

Non-Diagnostic
Zagar et al. 2008 Application: Muscle contraction

Validation:
Number of subjects: 1 volunteer 32 sets of data
Classification method: PCA + SIMCA

Nejadgholi et al. 2015 Application: Posture (arm orientation) detection
Validation:
Number of subjects: 8 volunteers
Classification method: PCA + k-NN had the best accuracy,
specificity and sensitivity

Kari et al. 2015 Application:
Validation: In vivo tissue classification
Number of subjects: Animal study
Classification method: Bayesian classification

Table 4.2: BIS classification applications

shown that PCA features (as opposed to Cole parameters) fed to a k-NN classifier resulted in
the highest accuracy (90%) for determining arm orientation.

Classifier accuracy is also determined by choice of fitting method to the Cole model. As
described earlier, a classification task was defined as properly categorizing arm position (up,
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down and horizontal). Cole parameters were extracted from the raw impedance data using
the LS and BFO algorithm, including genetic algorithms (GA) and particle swarm optimization
(PSO), and fed to various classifiers (k-NN, LDA, QDA and decision trees). In all cases, param-
eters extracted using the BFO method, followed by GA and PSO, resulted in higher classifier
accuracy than parameters provided by the LS method.

5 CONCLUSION

The objective of this chapter was to present an overview of overview of the major processing
processing steps of BIS data including modelling, denoising and classification. In order to
provide context to the challenges inherent in denoising and classifying methods, we first
described different types of systemic and random measurement errors as well as common
artifacts.

As shown in Figure 1.1, sources of noise originate from non-ideal instrumentation and ex-
perimental conditions. Measurement setup also significantly affects error levels; for instance
noise can be substantially reduced by appropriate measurement configuration such as using a
tetrapolar setup, modification of electrode properties to reduce the EPI effect, enhancing elec-
trode contact and so on. Denoising strategy (e.g. choise of denoising algorithm) is dependent
on type of data artifact; characterizing noise type is thus an integral part of data processing.

Denoising is typically implemented after raw data acquisition - before modelling and feature
extraction. Different types of denoising methods described in this chapter include averaging,
SVD decomposition, as well as removal of known artifacts (e.g. Hook artifact). Denoising can
also be applied as a post processing step after feature extraction and model fitting; for instance
classifiers have been used to distinguish between spectral features that are characteristic of
noise and those of clean data. The classifier approach represents a novel "smart method" of
noise removal algorithms based on learned parameters; we believe this will be an increasingly
important focus of future research.

Data reduction from the impedance spectra to several representative parameters is accom-
plished using explanatory or descriptive models. The most popular explanatory model is the
Cole model where impedance data is fitted to a semi-circular arc in the complex plane. Both
gradient based and stochastic optimization methods are used for fitting. The gradient method
is more appropriate for applications that require fast processing such as on-line monitoring
and the stochastic approach is better suited for applications requiring a high degree of accu-
racy. Typically PCA is used as descriptive method of modelling whereby data dimensionality is
reduced to a set of core eigenvectors/values; this is a compact way of representing the complex
multivariate data without losing essential information. This method also allows the removal of
noise and other sources of variability.

The use of classifiers in labeling features extracted from both explanatory and descriptive
models has been demonstrated in a number of studies. No consensus however exists yet
concerning a universally acceptable classification method for the BIS applications being
explored. Larger studies will allow for applying more advanced learning techniques due
to the increase of data available for analysis and classifier training. We expect to see more
of ANN, deep learning approaches and novel classifier combinations in the future to deal
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with highly non-linear BIS data. Other important research directions include integration of
BIS classification into larger diagnostic models, for example based on Bayesian networks;
better characterization of non-linear tissue properties and use of quantification of uncertainty
and sensitivity analysis for analyzing the sensitivity of various BIS models to different model
parameters and inputs.
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