A Comparison of EIT Lung Perfusion Measures

Symon Stowe1, Alistair Boyle1, Michaël Sage2, Mathieu Nadeau2, Jean-Paul Praud2, Étienne Fortin-Pellerin2, Andy Adler1

1Carleton University, Ottawa, Canada, 2Université de Sherbrooke, Canada

symon.stowe@carleton.ca
Why Monitor Lung Perfusion?

• Pulmonary embolisms are notoriously challenging to diagnose and monitor

• Mainly diagnosed using CT pulmonary angiography
 • Associated with radiation exposure and invasive administration of a contrast agent

• Clinical need to improve diagnosis and monitoring
 • Safe and low-cost method with few false positives
Perfusion/Ventilation Monitoring

Perfusion/Ventilation match Perfusion/Ventilation mismatch

Sample sketches represent ventilation and perfusion in a human thorax.
Ventilation

• Validated and reasonably well understood

Perfusion

• Less understood and validated
Perfusion Monitoring Techniques

Bolus Injection Ventilation Filtering Apnoea Filtering
Contrast agent measures of perfusion

- Requires apnoea
- Non-continuous
- Invasive
- Can be performed a limited number of times
- Provides a series of blood flow images
A Comparison of EIT Lung Perfusion Measures,
Symon Stowe, 2018/06/11
A Comparison of EIT Lung Perfusion Measures,
Symon Stowe, 2018/06/11
Experimental Protocol

Baseline Filling 10 minutes post 2 hours post
Experimental Protocol

- Gas
- Liquid

Baseline
Filling
10 minutes post
2 hours post

A Comparison of EIT Lung Perfusion Measures,
Symon Stowe, 2018/06/11
Frequency filtering technique

Time Domain

Frequency Domain

Phase Alignment

A Comparison of EIT Lung Perfusion Measures, Symon Stowe, 2018/06/11
Shortcomings of Pulsatility

• Heart rate is unstable over time

• Many pixels throughout the image are out of phase

• Events at the heart rate frequency are not limited to perfusion
Conclusion

• Many challenges accurately estimating perfusion from pulsatility

• Preliminary analysis shows correlation between the three methods of perfusion measures
 • Comparing both center of mass and overall shape

Bolus Injection Ventilation Filtering Apnoea Filtering
A Comparison of EIT Lung Perfusion Measures

Symon Stowe¹, Alistair Boyle¹, Michaël Sage², Mathieu Nadeau², Jean-Paul Praud², Étienne Fortin-Pellerin², Andy Adler¹

¹Carleton University, Ottawa, Canada, ²Université de Sherbrooke, Canada

symon.stowe@carleton.ca