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Abstract. Objective: Two main functional imaging approaches have been used to
measure regional lung perfusion using Electrical Impedance Tomography (EIT): venous
injection of a hypertonic saline contrast agent and imaging of its passage through
the heart and lungs, and digital filtering of heart-frequency impedance changes over
sequences of EIT images. This paper systematically compares filtering-based perfusion
estimates and bolus injection methods to determine to which degree they are related.
Approach: EIT data was recorded on 7 mechanically ventilated newborn lambs in which
ventilation distribution was varied through changes in posture between prone, supine,
left- and right-lateral positions. Perfusion images were calculated using frequency
filtering and ensemble averaging during both ventilation and apnoea time segments
for each posture to compare against contrast agent-based methods using Jaccard
distance score. Main Results: Using bolus-based EIT measures of lung perfusion as the
reference frequency filtering techniques performed better than ensemble averaging and
both techniques performed equally well across apnoea and ventilation data segments.
Significance: Our results indicate the potential for use of filtering-based EIT measures
of heart-frequency activity as a non-invasive proxy for contrast agent injection-based
measures of lung perfusion.

1. Introduction

Electrical Impedance Tomography (EIT) uses electrical stimulation and measurements
at electrodes on the body surface to reconstruct images of internal conductivity
distribution and its changes. The most common application of EIT, experimentally
and clinically, has been for imaging of the thorax (Frerichs et al. 2017). Using a ring
of electrodes around the chest, EIT is able to calculate images of impedance changes in
the abdomen. Although most research has focused on imaging of ventilation, there is
significant interest in imaging cardiovascular phenomena with EIT (Adler et al. 2012;
Leonhardt et al. 2012).

EIT has been evaluated for its ability to measure cardiac output and lung perfusion
since the early 90s (Eyüboğlu et al. 1989; Frerichs et al. 2002; Zadehkoochak et al.
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1992). Since then, various configurations of EIT have been evaluated (Borges et al.
2012; Nguyen et al. 2015). The effect of posture on EIT images was evaluated by
Reifferscheid et al. (2011), who showed that changing posture introduces a large and
reproducible variability into ventilation distribution as imaged by EIT. Based on results
showing a common relationship between the effect of gravity and perfusion in both
children and adults (Bhuyan et al. 1989), in newborns we expect to see a comparable
directional change in perfusion due to the changes in posture. Recently, Braun et al.
(2018) evaluated EIT’s ability to monitor cardiac output, showing that EIT is more
reliable for monitoring cardiac output trends than absolute cardiac output. EIT has
also been investigated for monitoring of systemic blood pressure (Solà et al. 2011), and
for monitoring of pulmonary arterial pressure (Proença et al. 2017).

EIT measurements are sensitive to blood movement in two main ways. First, it
is possible to image the transit of the contrast agent through the heart and lungs via
a conductivity-contrasting bolus into the veins and second, through digital filtering of
the time series of EIT images at the heart frequency (Leathard et al. 1994). While
multiple EIT measures of perfusion are used, their relationship is not well understood.
It is currently unclear to what degree pulsatile impedance changes represent blood flow,
and how they limit the potential for heart-frequency filtering to correctly estimate the
true perfusion (Nguyen et al. 2012).

Injection of a contrast agent to measure regional lung perfusion has been compared
with electron beam computed tomography (EBCT) and determined to be feasible
for measuring perfusion across different animals (Frerichs et al. 2002). Perfusion
measurement via conductivity contrasts has the advantage of measuring the true
perfusion, but requires placement of a catheter to introduce the contrast agent.
Bolus-derived measurements cannot be made continuously because they rely upon the
circulation of a contrast agent. In addition, the accumulation of NaCl (the main
conductivity contrast used) over multiple injections can lead to hypernatremia which
limits the rate at which bolus injections can be made.

Calculating the heart-frequency conductivity changes in the thorax offers the benefit
of a continuous functional measure calculated directly from EIT signals (possibly in
conjunction with a synchronization signal such as the ECG). Heart-frequency EIT
signals are typically an order of magnitude smaller than ventilation signals; thus, when
measurements are made during tidal ventilation, a large period of data must be used in
order to reduce the ventilation signal. On the other hand, measurements during apnoea
can be used to eliminate the ventilation signal, but for the safety of the patient the
apnoea was limited to 30 s. In healthy human subject of less than one year old it takes
a mean of 118 s for the blood oxygen saturation levels to drop below 90% (Xue et al.
1996), however the length of safe apnoea is much shorter for the sick preterm infant.
The time period was chosen based on experience in the lab showing that 30 s seconds
was not associated with bradycardia or desaturation to less than 90% blood oxygen
saturation.

There is a debate within the EIT community about the meaning of heart-frequency



Comparison of bolus- and filtering-based EIT measures of lung perfusion in an animal model 3

EIT signals (Adler et al. 2017a; Frerichs et al. 2017). Not all perfusion results in a
cardiac-frequency change (for example, continuous blood flow in capillaries), and non-
perfusion effects (for example, heart movement in the thoracic cavity) can result in
heart-frequency EIT signals. This debate is reflected by the terminology – perfusion
vs. pulsatility. Those who prefer “pulsatility” or “heart-frequency fEIT image” seek to
emphasise that frequency filtered signals are not “perfusion” (although they may be
related). While these pulsatility based EIT images are clearly not a direct measure of
perfusion, the signals appear to be useful and are often measured and reported (Bartocci
et al. 1999; Ericsson et al. 2016; Halter et al. 2008; Moens et al. 2014). To the authors’
knowledge, no systematic comparison of frequency-based perfusion measures has been
published.

The heart-frequency signal can be derived from frequency filtering or ensemble
averaging. Frequency-filtering uses a filter to isolate the frequency of heart-frequency
conductivity changes, and was introduced by Zadehkoochak et al. (1992) and Leathard
et al. (1994). Frequency filtering is susceptible to interference from ventilation when
the heart rate is at a harmonic of the breathing rate. Ensemble averaging is another
filtering approach which averages signals at a synchronized time, for example at the
QRS peak (Bartocci et al. 1999; Deibele et al. 2008). The impedance change due to
each heart beat is aligned and averaged to give a single heart-related impedance change,
representative of all heart-beats in the segment.

In this paper, we are motivated to better understand the relationship between
lung perfusion and heart-frequency filtering measures, and between the various filtering
approaches used to determine heart-frequency components. Our questions are: 1)
to what extent do heart-frequency filtering-based measures correspond to perfusion,
2) what are the advantages and disadvantages of different approaches to heart-
frequency filtering of EIT data, and 3) which techniques are recommended. In our
experimental protocol, we have selected posture-change to introduce changes in the
regional distribution of lung perfusion. These changes are then compared using bolus-
and filtering-based EIT measures.

2. Methods

2.1. Overview

Data were acquired as an additional protocol within a study to determine a baseline
for lung damage due to gas ventilation in neonatal lambs. This is part of an effort to
establish total liquid ventilation (TLV) as a less-injurious ventilation strategy for the
delicate lungs of neonatal subjects (Sage et al. 2018). In order to induce changes in
ventilation and perfusion patterns, posture changes were made between supine, prone,
left and right lateral positions.
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2.2. Animals

The study was conducted in accordance with the Canadian Council on Animal Care
guidelines upon approval by the animal research ethics board of Université de Sherbrooke
(protocol 417-17BR).

Seven healthy neonatal lambs (2–4 days old and 2.95±0.27 kg) were used.
Animals were anaesthetised (ketamin 10mg/kg IM at induction followed by propofol
100mcg/kg/min and ketamin 2mg/kg/h IV) and placed under mechanical gas
ventilation with: peak inspiratory pressure (PIP) 15 cmH2O, positive end-expiratory
pressure (PEEP) 5 cmH2O, respiratory rate (RR) of 60/min, and fractional
concentration of O2 in inspired gas (FiO2) of 30%.

A catheter was inserted into the carotid artery for blood gas and continuous blood
pressure monitoring. A jugular venous access was inserted to inject the saline bolus for
generating perfusion images. Each animal was shaved for placement of a custom EIT
belt around the lower third of the sternum in the transverse plane.

For each animal a bolus injection protocol was used: 1.5mL of 7.5% saline was
injected into the jugular vein at a constant rate over approximately 2s. Before each
bolus, ventilation was stopped for ten seconds, and a further twenty seconds of apnoea
was maintained before restarting ventilation.

After one hour of ventilation (for stabilization) EIT recordings were made during
the position change procedure. Each lamb was rotated onto its right side. Five minutes
after turning the subject, the bolus injection protocol was implemented. The animal
was then ventilated normally, remaining on the right side for an additional five minutes,
before being positioned on the left side for 5 minutes of regular ventilation, followed by
the bolus injection protocol.

At 2 hours of ventilation, the position change procedure was repeated, changing
the positioning of the lamb from prone to supine as the bolus injection protocol was
repeated and EIT recordings were captured.

2.3. Data Acquisition and Image Reconstruction

EIT data was acquired with the Pioneer Set (Swisstom, Landquart, Switzerland) using
a custom electrode belt (at an acquisition rate of 20 frames/s). The belt uses 32 brass
electrodes equally spaced around the thorax, using an ultrasound gel to ensure good
contact and minimise the contact impedance. The selected data in this study comes
from lateral positioning changes recorded after after 1.5 hours of ventilation and prone
to supine positioning changes after 2 hours.

EIT images were reconstructed using GREIT (Adler et al. 2009), which calculates
a reconstruction matrix R from which the reconstructed image is calculated as x̂ = Ry,
where y are the time-difference measurements, y(t) = v(t)−v(tr), where v(t) represents
the data frame acquired at time, t, and v(tr) measurements acquired at a “reference”
time, tr in the case of this experiment the reference was a mean of 10 images preceding
the bolus injection.
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Figure 1. This figure is a schematic overview of analysis methods for EIT perfusion.
The upper curve illustrates the global EIT signal during a period of ventilation followed
by apnoea and renewed ventilation. During apnoea a bolus of conductivity contrasting
saline is introduced. From these data 5 fEIT images are calculated: PVt: pulsatility
(perfusion) image during ventilation, calculated by ensemble averaging EIT data
during ventilation; PVf : pulsatility (perfusion) image during ventilation, calculated
by frequency filtering EIT data during ventilation; PAt: pulsatility (perfusion) image
during apnoea, calculated by ensemble averaging EIT data during apnoea; PAf :
pulsatility (perfusion) image during apnoea, calculated by frequency filtering EIT
data during apnoea; PB: perfusion image from bolus, calculated between a reference
measure during apnoea and one during the bolus
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The linear reconstruction matrix R = DΣtJ
T (JΣtJ + Σn)

−1 is calculated from a
finite element model of the body and electrode geometry F (·) and covariance estimates
of the image, Σt, noise, Σn (Grychtol et al. 2016), and a spatial filtering matrix, D.

EIT data from this experiment was prone to errors consisting of brief periods of
zeroed measurements stemming from the synchronisation equipment. Measurements
that were zeroed by the device were removed and replaced with linearly extrapolated
data to allow for frequency-based analysis over all selected segments of data. A moving
median filter with a width of 3 was used to further remove the noise caused by single
measurement errors in the signal.

2.4. Functional EIT Images

In each animal 4 episodes were recorded — one in each posture — to generate 5 different
functional EIT images.

The images Bolus-based measures of lung perfusion (PB) were calculated using time-
difference reconstructions. Heart-frequency filtering during ventilation (PVf) and apnoea
(PAf) used frequency analysis of EIT image sequences, as illustrated in figure 3, and
ensemble averaging-based methods during ventilation PVt and apnoea PAt are calculated
using ensemble averaging of identified pulsitile components figure 4.

The following methods were conducted on segments of data collected both during
apnoea and ventilation. Apnoea regions were selected as the total time that ventilation
was arrested, including the bolus section and had a duration of 30s. The ventilation data
was selected as 30s of data immediately preceding the induction of apnoea. Regions of
interest including lung, and heart areas in the images were defined by the lamb model
provided in EIDORS (Adler et al. 2017b).

2.4.1. Bolus injection image (PB) The beginning of the saline bolus injection was
determined as the point immediately preceding the drop in impedance from the
conductive agent, and is shown in figure 2 at the point marked “injection”. The mean
of 10 images including and immediately preceding the bolus injection were used as the
reference to which all bolus images were reconstructed from. To image perfusion, the
point with maximum decline in impedance over the sum of the pixels in the lung region
relative to the reference was selected based on the methods presented by Frerichs et al.
(2002). In figure 2 this was found at the point marked “perfusion”. This method was
used as the standard perfusion measuring technique against which the other methods
were compared.

2.4.2. Frequency-Filtering Heart-frequency EIT images during the selected events
were calculated by taking the FFT of the time-series image data after first applying
a Blackman window: w(n) = a0 − a1 cos

(
2πn
N−1

)
+ a2 cos

(
4πn
N−1

)
with a0 = 0.42, a1 = 0.5

and a2 = 0.08, where N is the number of time-series EIT images in the selected event.
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Figure 2. The method used to select the perfusion point from the bolus injection is
shown in the figure above. The point with the widest spread of high conductivity was
selected as the point of perfusion, shown here at 1.6 seconds after the contrast agent
injection. The image series shows the conductivity contrast as the bolus injection
travels through the thorax.

An FFT was calculated from a series of images restricted to pixels in the heart
region. From the FFT of all pixels the heart region, the heart frequency was selected as
the largest peak between 3 and 4.5 Hz, representing a heart rate between 180 and 240
bpm (typical for a newborn lamb).

The identified heart rate was used to select changes at the heart-frequency in the
frequency domain images of the entire thorax. Images at 3 frequencies on either side
of the heart rate were also reconstructed to account for changed in heart rate over
the course of the data collection. A Blackman window with a length of 7 was applied
surrounding the heart frequency to generate a weighted mean of the images, resulting
in a single perfusion image from the heart-frequency data.

The output of the frequency filtering method is an image with complex values
assigned to each pixel.

Depending on the timing of the pulsatility-based changes within the selected signal
the real component of frequency analysed image did not correspond to the maximum
conductivity change in the lungs in every event. In order to correct this, each image was
displayed along the axis that gave the maximum real component contained within the
lung region to ensure the maximum change in impedance related to pulsatile activity in
the lungs was calculated.

2.4.3. Ensemble Averaging Time series data of the total impedance signal for each pixel
in the heart region was filtered using a bandpass filter to eliminate noise and breathing
changes, and allow the heartbeat to be seen clearly in the signal. Peak detection was
used on this heart-region data to select the amplitude peaks in impedance change signal
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Figure 3. Frequency analysis methodology used for obtaining a perfusion image
from the time series data. Steps are: A) to reconstruct the images from time series
measurements; B) - D) window the time series data before performing a FFT on the
data for each element; E) Select the dominant frequency between 3 and 4.5 Hz as the
heart frequency; F) reconstruct the image at the heart frequency and selected nearby
frequencies; G) take the mean of the images at the heart frequency using a Blackman
window to give greater weight to those closer to the center; H) I) select the image that
will give the maximum real component contained in the lung region.
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Figure 4. Illustration of the stages of the ensemble averaging process: A) an ensemble
average of all heartbeats over the time frame is taken from the summed global signal;
and B) shows reconstructed images corresponding to each time point in the global
ensemble averaged signal above. The selected perfusion image is the image with the
maximum impedance increase in the lung region.

at the heart frequency.
Using the identified time points, the global impedance change signal was ensemble

averaged by overlaying all identified peaks to give an averaged heartbeat. 13 images
were reconstructed over the course of the heart beat to select the image that resulted
in the maximum positive increase impedance within the lung region. This process is
outlined in figure 4.
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2.5. Image Comparison

To compare the images the Jaccard distance between functional EIT images was
calculated. Negative impedance changes were removed from the images and the images
were normalized.

The Jaccard distance was calculated between the reference image calculated using
the maximum increase in lung-region conductivity during bolus injection (b), and the
frequency-based method (f): J(x, y) =

∑
i
min(bi,fi)
max(bi,fi)

representing the distance between
the two images.

2.6. Statistical Analysis

To determine the significance of the change in bolus between postures and methods, the
Cohen’s d score was calculated to quantify the effect size of the change in the centre
of mass of the perfusion image (Cohen 1988). This was calculated as the difference
between two means over the pooled standard deviation. Where the difference between

the two means is: µ1 − µ2, and the pooled standard deviation is:
√

(n1−1)s21+(n2−1)n2s21
n1+n2−2

.

3. Results

The Jaccard scores for each method were compared between ensemble averaging and
frequency filtering methods to determine the regions where performance was best for
each method. Figure 5 shows a comparison between Jaccard distance for each animal,
connecting lines indicate different methods performed on the same data segment, while
each marker shape denotes a separate posture.

On average frequency filtering outperforms ensemble averaging based methods of
perfusion calculation (p=0.04), and there is no significant difference in performance
of the heart-frequency based filtering techniques during periods of apnoea relative to
periods of ventilation.

Of the 56 data regions that were analysed, the ensemble averaging performed better
in 12 cases and the frequency filtering achieved the best performance in 28 cases, there,
were 16 additional cases where the difference in performance was negligible at less than
5%. On average, across all images, frequency filtering based methods scored 7% higher
than ensemble averaging.

The center of mass of the perfusion measure images using the bolus injection method
had a Cohen’s d score of less than 0.1 between posture changes indicating that there is an
insignificant or trivial difference in the means relative to the standard deviation (Cohen
1988). To demonstrate the visually observable changes due to posture change and
the high similarities that can be observed between filtering- and bolus-based perfusion
estimates, frequency filtered images from animal 4 are compared to bolus based methods
in figure 6.
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Figure 5. Jaccard scores for each method and animal in the comparison. Frequency
filtering and ensemble averaging methods performed on the same data segment are
connected by solid lines. Red lines and markers indicate apnoea data sections, while
blue indicates ventilation data sections. Each posture is denoted by a different shaped
marker in the figure.

4. Discussion

Two primary approaches of EIT perfusion calculation have been compared in this
paper: injection of a bolus of contrast-agent resulting in EIT image changes which
produce perfusion measures, and digital filtering of EIT image sequences to extract
the heart-frequency components. Additionally, various algorithms have been evaluated
for digital filtering-base approaches during mechanical ventilation and short apnoea
sequences, using both frequency- and ensemble averaging-based techniques. There have
been few comparisons of these techniques, and we set out to better understand the
relationship between perfusion and heart-frequency measures, and between the various
filtering approaches used to determine heart-frequency cardiac changes. We selected an
experimental protocol using posture-change to alter the regional distribution of lung
ventilation and perfusion in newborn lambs.

Our first question was “to what extent do heart-frequency filtering-based measures
correspond to perfusion?”

The primary results (figure 5) use a Jaccard index of the similarity between
functional images. Overall it was found that in healthy animals the Jaccard index
indicated good agreement with our gold standard. While highly dependant on the data,
it was found that there was a high degree of similarity between methods with respect to
the overall shape of the perfusion. In both animals 2 and 4, where the signal required
little preprocessing before analysis there is a higher Jaccard score across all cases.
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Figure 6. This figure shows the tracking of perfusion for frequency filtering measures
of perfusion during apnoea and ventilation sections compared to bolus injection for
animal 4. PB is the bolus injection image, PAf uses the frequency filtering method
during apnoea and PVf is the frequency filtering method during ventilation.
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The synchronisation box was attached to the EIT system but was not used for this
experiment, an error in the connection caused brief periods of the signal (less than 1 s) in
some animals to be zeroed. Through careful processing of this signal only brief sections
of data were lost and we do not feel this impacts the results.

During the experiment the order of posture change was not randomised. While
changes in ventilation due to posture change are not understood to have long term
physiological effects, if there is a longer term effect of change in posture the lack of
randomisation will impact the results. Nguyen et al. (2015) were able to image perfusion
changes due to induced pulmonary embolisms and using the peak impedance change on
dilution curves, however our data presented insufficient variance in perfusion induced by
posture change to complete a center of mass analysis. A higher statistical power could
potentially be achieved through initiating posture changes with more dramatic results
in perfusion, such as upright to supine (Nakazato et al. 2010).

Throughout the experiment, the perfusion image was selected as the image
containing the largest increase in conductivity in the sum of pixels in the lung region,
which occurred at different relative times across animals and events. Many factors could
affect this including belt positioning changes, and it could be a contributing factor
to the inconsistent trends in amplitude changes in the global image across methods.
Borges et al. (2012) compared EIT perfusion images using first-pass kinetics and heart-
frequency filtering based methods to perfusion measures using SPECT, finding that
heart-frequency filtering techniques made systemic errors when used to estimate the
perfusion. They also determined that there was no discernible relationship between the
magnitude of the SPECT images and the heart-frequency images. This was consistent
with the findings of this study that image amplitude of the bolus injection and heart-
frequency filtering-based methods was not consistent in all animals. This methodology
presented by Borges et al. (2012) was not part of the comparison in this study as the
edentification of the perfusion signal due to the heart could not be consistently identified
and removed across all animals. In two dimensions, heart-frequency and ventilation
signals have been used to identify the location of the heart and lungs within the EIT
electrode plane with known electrode locations and anatomy (Ferrario et al. 2012), but
in situations where the electrode location and anatomy is not precisely known EIT
tends to perform poorly as a structural imaging modality (Adler et al. 2017a). These
challenges suggest that configurations with multiple planes of electrodes may be better
able to isolate and remove off-plane pulsatility signals related to the heart.

It was observed that the general shape of the perfusion was consistent across all
methods despite amplitude variations. One reason for the difference in amplitude change
across animals may be due to slight variations in the belt placement and electrode
positioning on the animals. If the belt is closer to the heart, there will be a larger
heart-frequency component to the signal and there may be a variance in the impedance
change due to bolus injection.

Next, we asked “what are the advantages and disadvantages of different approaches
to heart-frequency filtering of EIT data, and which techniques are recommended under
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which circumstances?”
Our overall recommendation is that, whenever possible, frequency filtering

techniques should be used. This is largely because frequency filtering methods tend to be
more stable in the presence of noise on the signal. Ensemble techniques are advantageous
in some circumstances, because they better use the heart-frequency variability to avoid
interference from harmonics of the ventilation at the heart rate. For frequency-filtering
techniques, it is necessary to widen the heart-frequency filters to account for such
variability. On the other hand, it is sometimes not possible to accurately synchronize
heartbeats, due to noise corruption in the signals or the very low amplitude of the
heart-frequency signals relative to the ventilation signal. In cases where the signal
of the heartbeat was not clearly identifiable through visual inspection of the signal,
neither ensemble averaging nor frequency filtering was able to achieve good estimates
of perfusion relative to the bolus injection event.

In summary, our goal was to understand the relationship between bolus- and
filtering-based EIT measurements of lung perfusion, as well as the relationship between
different filtering-based measures of perfusion. Our results indicate there is a common
trend between the shape and perfusion estimates of both heart-frequency and bolus
injection images despite the difference in physiological events behind each measure.
Amongst filtering techniques, frequency filtering outperforms ensemble averaging across
regions of data where there is noise present and the heart signal cannot be readily
identified, and both methods were able to approximate the bolus injection measures
equally well when applied to apnoea and ventilation regions of data.
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